
EXPRESSIVE POWER OF ACCESS CONTROL MODELS
BASED ON PROPAGATION OF RIGHTS

by

SRINIVAS GANTA

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Ful�llment of

the Requirements for the Degree

of

Doctor of Philosophy

Information Technology

Committee:

Dr. Ravi Sandhu, Dissertation Director

Dr. Larry Kerschberg

Dr. Sushil Jajodia

Dr. Paul Ammann

Dr. Pearl Wang

Dr. W. Murray Black, Associate for

Graduate Studies and Research

Dr. Andrew P. Sage, Dean, School of

Information Technology and Engineering

Date: Spring 1996

George Mason University

Fairfax, Virginia

Expressive Power of Access Control Models Based on
Propagation of Rights

A dissertation submitted in partial ful�llment of the requirements for the degree of

Doctor of Philosophy at George Mason University.

By

SRINIVAS GANTA

B.Tech., Jawaharlal Nehru Technological University, Kakinada, INDIA 1989

M.S., George Mason University, Fairfax, VA, 1991

Director: Dr. Ravi Sandhu, Professor

Information and Software Systems Engineering

Spring 1996

George Mason University

Fairfax, Virginia

ii

Copyright

by

SRINIVAS GANTA

1996

iii

Acknowledgments

I would like to express my sincere gratitude and appreciation to my PhD advisor and

dissertation director, Professor Ravi Sandhu, for all his valuable guidance, teaching,

and encouragement during the realization of this research.

I sincerely thank Professor Sushil Jajodia for letting me be part of Center for

Secure Information Systems and also for always asking me to work harder. Thanks

also goes to Professor Larry Kerschberg, Professor Paul Amman, and Professor Pearl

Wang for their general guidance, useful comments, valuable suggestions, and thought-

ful revision of the research material.

I like to thank my sister Geeta for all her love and a�ection. I like to thank

Bunty, Rama and Raja for taking me into their family. I like to thank Varun, Latha,

Raju, Lakshmi and RK for making my life so enjoyable. I like to thank Srini and Gino

for their friendship, valuable advices and for treating me like a brother. I also like to

thank all of my friends at Mason who made my stay at Mason a very memorable one.

I dedicate this dissertation to my parents Uma Devi and Krishna Murthy,

and to Professor Sandhu. I cannot thank my parents enough for their support and

encouragement during all the years with perseverance for the accomplishment of my

greatly desired dream and goal of completing my PhD degree. I would like to thank

Professor Sandhu for always being there for me like a father, and I would like to let

him know that if it was not for him I would not be getting a PhD.

iv

Table of Contents

Page

List of Tables vii

List of Figures viii

Abstract ix

Chapter 1. Introduction and Problem Statement 1

1.1 Introduction : 1

1.2 Brief History of Access Control Models : : : : : : : : : : : : : : : : : : : 3

1.3 Problem Statement : 4

1.4 Summary of Contributions : 5

1.5 Organization of the Thesis : 6

Chapter 2. Access Control Models: TAM and its Variations 7

2.1 Typed Access Matrix (TAM) Model : 7

2.1.1 The Single-Object TAM (SOTAM) Model : : : : : : : : : : : : : : 12

2.1.2 Unary TAM (UTAM), Binary TAM (BTAM) and KTAM : : : : : 13

2.2 Augmented TAM (ATAM) : 15

2.2.1 Augmented SOTAM (SO-ATAM) : : : : : : : : : : : : : : : : : : 15

2.2.2 Augmented Unary TAM (U-ATAM), Augmented Binary TAM (B-
ATAM) and K-ATAM : 16

Chapter 3. Expressive Power of Access Control Models 18

3.1 Access Control Models : 18

3.2 Simulation of Systems : 22

3.2.1 Formal De�nition of Simulation : 29

3.3 Expressive Power of Models : 32

v

Chapter 4. Expressive Power of ATAM and TAM 35

4.1 Weak Equivalence of ATAM and TAM : : : : : : : : : : : : : : : : : : : 35

4.1.1 Equivalence Without Create or Destroy Operations : : : : : : : : : 36

4.1.2 Equivalence With Create and Destroy Operations : : : : : : : : : : 37

4.1.3 Simulation of ATAM schemes : 48

4.2 Strong Non-Equivalence of ATAM and TAM : : : : : : : : : : : : : : : : 50

Chapter 5. Dynamic Separation of Duties Based on ATAM 57

5.1 Implementing Transaction Control Expressions : : : : : : : : : : : : : : : 58

5.1.1 Transient Objects : 58

5.1.2 Coincidence of Duties : 68

5.1.3 Persistent Objects : 72

5.2 Automatic Translation of TCEs : 77

5.3 Conclusion on the use of testing for absence of rights : : : : : : : : : : : 78

Chapter 6. Expressive Power of ATAM and its Variations 79

6.1 Expressive Power of Augmented SOTAM : : : : : : : : : : : : : : : : : : 79

6.1.1 Equivalence Without Create and Destroy Operations : : : : : : : : 80

6.1.2 Equivalence With Create and Destroy Operations : : : : : : : : : : 89

6.2 Expressive Power of Unary-ATAM : 91

6.2.1 Equivalence Without Create and Destroy Operations : : : : : : : : 91

6.2.2 Equivalence With Create and Destroy Operations : : : : : : : : : : 98

Chapter 7. Expressive Power of TAM and its Variations 100

7.1 Expressive Power of SOTAM : 100

7.1.1 Two Column Synchronization Protocol : : : : : : : : : : : : : : : : 101

7.1.2 Equivalence Without Create and Destroy : : : : : : : : : : : : : : 105

7.1.3 Expressive Power With Create and Destroy : : : : : : : : : : : : : 113

7.2 Expressive Power of Unary-TAM and KTAM : : : : : : : : : : : : : : : : 115

7.2.1 Weak Equivalence of TAM and UTAM : : : : : : : : : : : : : : : : 115

7.2.2 Strong Non-Equivalence Conjecture : : : : : : : : : : : : : : : : : 117

Chapter 8. Conclusion 118

8.1 Contributions : 118

8.2 Future Research : 120

8.2.1 Better Simulations : 120

8.2.2 Safety Issues : 120

8.2.3 Implementation Issues : 120

vi

Bibliography 122

vii

List of Tables

Table Page

2.1 Variations of TAM and ATAM : 16

2.2 Summarized Results : 17

8.1 Summarized Results : 119

viii

List of Figures

Figure Page

4.1 Initial Access Matrix of the TAM Simulation : : : : : : : : : : : : : : 39

4.2 TAM Simulation of the ATAM Command CCreate: Phase I : : : : : 41

4.3 TAM Simulation of the ATAM Command CCreate: Phase II : : : : : 43

4.4 TAM Simulation of the ATAM Command CCreate: Phase III : : : : 44

4.5 Destruction of S3 : 46

4.6 Initial state of ATAM system A : 52

4.7 Example of ATAM System A : 53

6.1 SO-ATAM Simulation of the n-Parameter ATAM Command Ci: Phase I 84

6.2 SO-ATAM Simulation of the n-Parameter ATAMCommand Ci: Phase II 85

6.3 SO-ATAM Simulation of the n-Parameter ATAMCommand Ci: Phase
III : 86

7.1 Two Column Synchronization : 102

7.2 SOTAM Simulation of the n-Parameter TAM Command Ci: Phase I 108

7.3 SOTAM Simulation of the n-Parameter TAM Command Ci: Phase II 111

7.4 SOTAM Simulation of the n-Parameter TAM Command Ci: Phase III 112

Abstract

EXPRESSIVE POWER OF ACCESS CONTROL MODELS BASED ON
PROPAGATION OF RIGHTS

SRINIVAS GANTA, Ph.D.

George Mason University, 1996

Dissertation Director: Dr. Ravi Sandhu

Access control models provide a formalism and framework for specifying, analyzing

and implementing security policies in multi-user systems. These models are usually

de�ned in terms of the well-known abstractions of subjects, objects and access rights.

Access control models should be
exible enough to express a wide range of policies.

The
exibility of an access control model can be measured through its expressive

power.

In this thesis, we compare the expressive power of access control models in a

relative manner. Intuitively, model A is at least as expressive as model B, if every

policy that can be expressed by B can also be expressed in A. If the converse is

also true, than the models are equivalent and can express exactly the same set of

policies. In particular, we compare the expressive power of Typed Access Matrix

Model (TAM), Augmented TAM (ATAM) and their variations. TAM was introduced

by Sandhu, and it is known to have broad expressive power. ATAM an extension of

TAM was introduced by Ammann and Sandhu and it allows for testing for absence

of rights, whereas TAM does not.

We �rst develop a formalism to compare the relationship between expressive

power of two models. We de�ne two notions of equivalence: Strong and Weak. Strong

equivalence implies weak equivalence, but not vice-versa. Our formalism helps in

proving whether two models are equivalent (strongly or weakly or both) or not equiv-

alent (either strongly or weakly). We speci�cally show that TAM and ATAM are not

strongly equivalent, but they are weakly equivalent. This indicates that adding test-

ing for absence of rights does increase the expressive power of access control models.

We also illustrate the practical signi�cance of this fact by showing that implementing

transaction control expressions does require the ability to test for absence of rights in

access control models.

We then prove an important fact that very simple models do have the most

general expressive power of the more general models they are derived from. We get

to this conclusion by de�ning simple models obtained by posing restrictions on TAM

and ATAM and comparing their expressive power. We also indicate that simpli�ca-

tion of models can be carried to a point, beyond which they loose some expressive

power. We also discuss the implications of the expressive power results on safety and

implementation issues of access control models.

Chapter 1

Introduction and Problem Statement

1.1 Introduction

Access control policies are needed in any information system that facilitates controlled

sharing of data and other resources among multiple users. Access control policies are

speci�ed, analyzed, and implemented through the formalism and framework speci�ed

by access control models. It is desirable that the access control models be
exible

enough so that the system can support the security administrator in enforcing a

policy appropriate for the organization. The following examples illustrate the need

for
exible access control models.

Consider a typical document approve/release example where a scientist creates

a document, and prior to releasing that document, needs approval from two separate

o�cers: a security-o�cer and a patent-o�cer. After review of the document, the

security-o�cer and the patent-o�cer each grant the scientist an appropriate approval.

After obtaining approval from both o�cers, the scientist can publish the document.

The access control model should be
exible enough to enforce this example in many

di�erent ways. One possibility is where once the scientist requests approval from the

two o�cers, he can never change that document again. If one of the o�cers rejects

the document then the document is considered to be dead. Another possibility is |

instead of re-creating a new document following a rejection, it might be more e�cient

from the viewpoint of the scientist, to be allowed to edit the existing document.

1

2

A second example is one where a check needs to be approved by three di�erent

supervisors, and a clerk can issue the check only after the approval of the supervisors.

If an approval of a check by a manager is equivalent to approval by two supervisors,

than there are many ways of achieving the desired approval. The access control model

should be
exible enough to allow the approval of the check by three di�erent super-

visors or by two managers or by one supervisor and a manager or by two supervisors

and a manager. If the model is not
exible and if it only allows three supervisors

to approve, then this might lead to a situation where all the supervisors are busy to

approve a check and the managers (who are free) cannot approve. Hence the above

examples indicate the necessity for
exible access control models.

Several access control models, have been published in the literature (see for

example [AS92a, HRU76, LM82, San88b, San89b, San92b, SS92a]). These models

are de�ned in terms of the well-known abstractions of subjects, objects and access

rights. Three important issues concerned with access control models are expressive

power, safety and implementation.

Access control models should have adequate expressive power, i.e, they should

enforce policies of practical interest. One measure of expressive power of a model (and

there can be other measures) is relative and is measured in terms of the expressive

power of some other model. Security models based on propagation of access rights

must confront the safety problem. In its most basic form, the safety question asks:

is there a reachable state in which a particular subject possesses a particular right

for a speci�c object? It is obviously desirable that for any policy which is enforced,

we should be able to answer the safety question e�ciently. Last but not the least

is implementation. In particular, we are interested in implementing the models in a

distributed environment using a simple client-server architecture. The next section

discusses the history of access control models with respect to these issues.

3

1.2 Brief History of Access Control Models

The Access Matrix proposal of [Lam71] contains a particular set of rules to control

the propagation of access rights. These rules basically give the owner of an object

complete discretion regarding rights to that object. Graham and Denning [GD72]

proposed various rules by which the discretionary ability of the owner could be granted

to other subjects. Even though many such rules can be proposed, no one set of rules

could be argued to be the single universal policy which everyone should implement

in their systems. This led Harrison, Ruzzo and Ullman to develop a model called

HRU [HRU76]. This model could easily express complex policies for propagation of

access rights. HRU does have good expressive power, unfortunately it has extremely

weak safety properties. In general, safety is undecidable [HR78]. Safety is undecidable

for most policies of practical interest, even in the monotonic version of HRU [HR78].

Monotonic models do not allow deletion of access privileges. As the ability to delete

access privileges is an important requirement, monotonic models are too restrictive

to be of much practical use. It appears that HRU does not have an useful special

case for which safety is e�ciently decidable.

The take-grant model was introduced by Lipton and Snyder [LS77] in response

to the negative safety results of HRU. The take-grant model was analyzed by a number

of authors [LM82, Bis88, Sny81]. The take-grant model has linear time algorithms for

safety. But the disadvantage of take-grant model is that it was deliberately designed

to be of limited expressive power to eliminate the undecidable safety of HRU. Hence,

there is a signi�cant di�erence between the expressive power of take-grant and HRU.

The Schematic Protection Model (SPM) [San88b] was proposed by Sandhu to

�ll the gap in expressive power between take-grant and HRU. SPM has strong safety

properties and it can express wide variety of policies of practical interest. SPM is

in fact less expressive than monotonic HRU [ALS92]. This led to the development

4

of Extended Schematic Protection Model (ESPM) [AS92a] by Ammann and Sandhu.

ESPM extends single parent creation operation in SPM to allow multiple parents for

a child. ESPM is equivalent to monotonic HRU [AS90, AS92a] in terms of expressive

power and it still retains the positive safety results of SPM [AS90, AS91]. Even

though SPM and ESPM have very good safety properties, they still do not have the

expressive power of HRU, as SPM and ESPM are monotonic.

Typed Access Matrix Model (TAM) [San92b] was proposed by Sandhu and its

extension Augmented Typed Access Matrix Model (ATAM) [AS92b] was proposed

by Ammann and Sandhu to accommodate both the strong expressive power of HRU

and positive safety results of ESPM. TAM was de�ned by introducing strong typing

into HRU (i.e., each subject or object is created to be of a particular type which

thereafter does not change). TAM has the same expressive power as HRU, and at the

same time monotonic TAM has strong safety properties similar to SPM and ESPM.

ATAM is same as TAM with the addition ability to test for absence of access rights.

Hence ATAM can express all the policies that can be expressed by TAM.

Single-Object TAM (SOTAM) [SS92b] was de�ned by Sandhu and Suri. SO-

TAM is a simpli�ed version of TAM, with the restriction that all operations in a

command are required to operate on a single object. It has been shown in [SS92b]

that SOTAM has a very simple implementation in a typical client-server architecture.

It has also been conjectured in [SS92b] that SOTAM is equivalent to TAM in terms

of expressive power.

1.3 Problem Statement

In this thesis, we consider Typed Access Matrix Model (TAM) [San92b] and its ex-

tension Augmented Typed Access Matrix Model (ATAM) [SS92b] as they both have

strong expressive power (as discussed above). We would like to compare the expres-

5

sive power of TAM and ATAM to address the impact of adding testing for absence of

rights in access control models (on expressive power). If adding testing for absence of

rights increases the expressive power of access control models, we would also like to

know whether testing for absence of rights is actually needed in practical situations.

We are also interested in the expressive power of various simpler models obtained by

posing some restrictions on TAM and ATAM. We compare the expressive power of

these simpler models with TAM and ATAM. We are also interested to know how far

TAM and ATAM can be restricted beyond which they loose some expressive power.

We would like to address the implications of these expressive power results on safety

and implementation.

1.4 Summary of Contributions

(1) Our �rst contribution in this thesis is that we provide a formalism to compare

the relationship between expressive power of two models. We de�ne two notions of

equivalence: Strong and Weak. Our formalism helps in proving whether two models

are equivalent (strongly or weakly or both) or not equivalent (both strongly and

weakly).

(2) The second contribution is that we formally prove the result of adding

testing for absence of rights (in access control models) on expressive power. By

formally proving that TAM is not strongly equivalent to ATAM, we prove that adding

testing for absence of rights does increase the expressive power of access control

models. We also show that the ability to test for absence of rights is desired in

practical situations by arguing that implementing transaction control expressions does

require the ability to test for absence of rights in access control models. 1

1Our construction to show this builds upon and extends the construction outlined in [AS92b].

6

(3) The third contribution of this thesis is that we prove an important fact

that very simple models do have the most general expressive power of the models

they are derived from. We also indicate that simpli�cation of models can be carried

to a point, beyond which they loose some expressive power. The expressive power

results obtained in this thesis indicate that the safety analysis of these simple models

is as di�cult as the most general model they are derived from.

1.5 Organization of the Thesis

Chapter 2 gives a brief background on access control models. In particular, it reviews

the Typed Access Matrix Model (TAM) de�ned in [San92b]. It also de�nes simpler

models which are obtained by posing some restrictions on TAM and ATAM. Chapter 3

provides a formalism to compare the expressive power of two models. It also de�nes

the notion of strong and weak equivalence. Chapter 4 addresses the impact of adding

testing for absence of rights in access control models on expressive power. Chapter 5

addresses the need for testing for absence of rights in implementing transaction control

expressions (TCE's) for separation of duties. Chapter 6 compares the expressive

power of ATAM and its variations. Chapter 7 compares the expressive power of TAM

and its variations. Finally, chapter 8 enumerates the contributions of this dissertation

and discusses future research directions.

Chapter 2

Access Control Models: TAM and its Variations

This chapter gives a brief background on access control models. In particular, we

review the Typed Matrix Model (TAM) de�ned in [San92b] and few other models

which are de�ned by either posing some restrictions on TAM or by extending TAM.

Section 2.1 explains TAM. Section 2.1.1 describes Single-Object Typed Access Ma-

trix Model (SOTAM). Section 2.1.2 de�nes Binary TAM (BTAM) and Unary TAM

(UTAM). Section 2.2 describes Augmented TAM (ATAM) and section 2.2.1 de�nes

Augmented SOTAM (SO-ATAM). Finally section 2.2.2 de�nes Augmented Unary

TAM (U-ATAM) and Augmented Binary TAM (B-ATAM).

2.1 Typed Access Matrix (TAM) Model

In this section we review the de�nition of TAM, which was introduced by Sandhu

in [San92b]. The principal innovation of TAM is to introduce strong typing of subjects

and objects, into the access matrix model of Harrison, Ruzzo and Ullman [HRU76]

(i.e., each subject or object is created to be of a particular type which thereafter

does not change). This innovation is adapted from Sandhu's Schematic Protection

Model [San88b], and its extension by Ammann and Sandhu [AS92a].

As one would expect from its name, TAM represents the distribution of rights

in the system by an access matrix. The matrix has a row and a column for each

subject and a column for each object. Subjects are also considered to be objects.

7

8

The [X;Y] cell contains rights which subject X possesses for object Y .

Each subject or object is created to be of a speci�c type, which thereafter

cannot be changed. It is important to understand that the types and rights are

speci�ed as part of the system de�nition, and are not prede�ned in the model. The

security administrator speci�es the following sets for this purpose:

� a �nite set of access rights denoted by R, and

� a �nite set of object types (or simply types), denoted by T .

For example, T = fuser; so; fileg speci�es there are three types, viz., user, security-

o�cer and �le. A typical example of rights would be R = fr; w; e; og respectively

denoting read, write, execute and own. Once these sets are speci�ed they remain

�xed, until the security administrator changes their de�nition. It should be kept in

mind that TAM treats the security administrator as an external entity, rather than

as another subject in the system.

The protection state (or simply state) of a TAM system is given by the four-

tuple (OBJ; SUB; t;AM) interpreted as follows:

� OBJ is the set of objects.

� SUB is the set of subjects, SUB � OBJ .

� t : OBJ ! T , is the type function which gives the type of every object.

� AM is the access matrix, with a row for every subject and a column for every

object. The contents of the [S;O] cell of AM are denoted by AM [S;O]. We

have AM [S;O] � R.

9

The rights in the access matrix cells serve two purposes. First, presence of a right,

such as r 2 AM [X;Y] may authorize X to perform, say, the read operation on Y .

Second, presence of a right, say o 2 AM [X;Y] may authorize X to perform some

operation which changes the access matrix, e.g., by entering r in AM [Z; Y]. In other

words, X as the owner of Y can change the matrix so that Z can read Y .

The protection state of the system is changed by means of TAM commands.

The security administrator de�nes a �nite set of TAM commands when the system

is speci�ed. Each TAM command has one of the following formats.

command �(X1 : t1, X2 : t2, : : : , Xk : tk)
if r1 2 [Xs1 ;Xo1] ^ r2 2 [Xs2 ;Xo2] ^ : : : ^ rm 2 [Xsm ;Xom]
then op1; op2; : : : ; opn

end

or

command �(X1 : t1, X2 : t2, : : : , Xk : tk)
op1; op2; : : : ; opn

end

Here � is the name of the command; X1, X2, : : : , Xk are formal parameters whose

types are respectively t1, t2, : : : , tk; r1, r2, : : : , rm are rights; and s1, s2, : : : , sm

and o1, o2, : : : , om are integers between 1 and k. Each opi is one of the primitive

operations discussed below. The predicate following the if part of the command is

called the condition of �, and the sequence of operations op1; op2; : : : ; opn is called

the body of �. If the condition is omitted the command is said to be an unconditional

command, otherwise it is said to be a conditional command. Note that a disjunctive

condition, such as r1 2 [Xs1 ;Xo1] _ r2 2 [Xs2 ;Xo2], can be simulated by two separate

commands with conditions r1 2 [Xs1 ;Xo1] and r2 2 [Xs2 ;Xo2] respectively. Hence, for

simplicity, we de�ne a condition to be a conjunction without any loss of generality.

A TAM command is invoked by substituting actual parameters of the ap-

propriate types for the formal parameters. The condition part of the command is

10

evaluated with respect to its actual parameters. The body is executed only if the

condition evaluates to true.

There are six primitive operations in TAM, grouped into two classes, as follows.

enter r into [Xs;Xo]
create subject Xs of type ts
create object Xo of type to

(a) Monotonic Primitive Operations

delete r from [Xs;Xo]
destroy subject Xs

destroy object Xo

(b) Non-Monotonic Primitive Operations

It is required that s and o are integers between 1 and k, where k is the number of

parameters in the TAM command in whose body the primitive operation occurs.

The enter operation enters a right r 2 R into an existing cell of the access

matrix. The contents of the cell are treated as a set for this purpose, i.e., if the

right is already present the cell is not changed. The enter operation is said to be

monotonic because it only adds and does not remove from the access matrix. The

delete operation has the opposite e�ect of enter. It (possibly) removes a right from

a cell of the access matrix. Since each cell is treated as a set, delete has no e�ect

if the deleted right does not already exist in the cell. Because delete (potentially)

removes a right from the access matrix it is said to a non-monotonic operation.

The create subject and destroy subject operations make up a similar

monotonic versus non-monotonic pair. The create subject operation requires that

the subject being created has a unique identity di�erent not only from existing sub-

jects, but also di�erent from all subjects that have ever existed thus far.1 The destroy

1There is some question about whether or not creation should be treated as a monotonic opera-

11

subject operation requires that the subject being destroyed currently exists. Note

that if the pre-condition for any create or destroy operation in the body is false,

the entire TAM command has no e�ect. The create subject operation introduces

an empty row and column for the newly created subject into the access matrix. The

destroy subject operation removes the row and column for the destroyed subject

from the access matrix. The create object and destroy object operations are

much like their subject counterparts, except that they work on a column-only basis.

Two examples of TAM commands are given below.

� command create-�le(U : user; F : file)

create object F of type file;

enter own in [U;F];

end

� command transfer-ownership(U : user; V : user; F : file)

if own 2 [U;F] then

delete own from [U;F];

enter own in [V; F];

end

The �rst command authorizes users to create �les, with the creator becoming the

owner of the �le. The second command allows ownership of a �le to be transferred

from one user to another.

tion. The fact that creation consumes a unique identi�er for the created entity, which cannot be used
for any other entity thereafter, gives it a non-monotonic aspect. In our work we have always treated
creation as a monotonic operation. This is principally because systems without creation are not
very interesting. Treating creation as non-monotonic would therefore make the class of monotonic
systems uninteresting. Monotonic systems with creation are, however, an important and useful class
of systems.

12

To summarize, a system in speci�ed in TAM by de�ning the following �nite

components.

1. A set of rights R.

2. A set of types T .

3. A set of state-changing commands, as de�ned above.

4. The initial state.

We say that the rights, types and commands de�ne the system scheme. Note that

once the system scheme is speci�ed by the security administrator it remains �xed

thereafter for the life of the system. The system state, however, changes with time.

2.1.1 The Single-Object TAM (SOTAM) Model

SOTAM is a simpli�ed version of TAM, with the restriction that all primitive op-

erations in the body of a command are required to operate on a single object. An

object is represented as a column in the access matrix. Similarly, when a subject is

the \object" of an operation, that subject is viewed as a column in the access matrix.

SOTAM stipulates that all operations in the body of a command are con�ned to a

single column.

Given below are two commands. The command review is a SOTAM command

as the body of the command has operations on a single object. The command share-

ownership is not a SOTAM command as the body of the command has operations on

two objects.

13

command review(S : sci;O : doc; SO : sec� off; PO : pat� off)
if own 2 [S;O] then

enter review in [SO;O];
enter review in [PO;O];

end

command share-ownership(S1 : s1; S2 : s2; O1 : o1; O2 : o2)
if own 2 [S1; O1] ^ own 2 [S2; O2] then

enter own in [S2; O1];
enter own in [S1; O2];

end

To appreciate the motivation for SOTAM consider the usual implementation

of the access matrix by means of access control lists (ACL's). Each object has an ACL

associated with it, representing the information in the column corresponding to that

object in the access matrix. The restriction of SOTAM implies that a single command

can modify the ACL of exactly one object. These modi�cations can therefore be

done at the single site where the object resides. This greatly simpli�es the protocols

for implementing the commands. In particular, we do not need to be concerned

about coordinating the completion of a single command at multiple sites. There is

therefore no need for a distributed two-phase commit for SOTAM commands. Further

details on an implementation outline of SOTAM are given in [SS92b]. One of the

results proved in this thesis is that SOTAM is strongly equivalent to TAM in terms

of expressive power (see section 7.1).

2.1.2 Unary TAM (UTAM), Binary TAM (BTAM) and KTAM

Unary TAM is same as TAM except that the commands have the ability to test for

at most one cell. The following is an example of a typical UTAM command.

14

command utam(X1 : t1, X2 : t2, : : : , Xk : tk)
if P1 � [Xsa;Xob]
then op1; op2; : : : ; opn

end

Here utam is the name of the UTAM command; X1, X2, : : : , Xk are formal

parameters whose types are respectively t1, t2, : : : , tk; r1, r2, : : : , rm are rights; and

s1, s2, : : : , sm and o1, o2, : : : , om are integers between 1 and k. The predicate of the

command tests only one cell represented by [Xsa;Xob] and P1 is a set of rights. The

body of the command has primitive operations which can modify multiple cells. The

command review given earlier is an UTAM command as it only tests one cell and the

command share-ownership given earlier is not an UTAM command as it tests for two

cells.

Binary TAM is same as TAM except that the commands have the ability to

test for at most two cells. The following is an example of a typical BTAM command.

command btam(X1 : t1, X2 : t2, : : : , Xk : tk)
if P1 � [Xsa ;Xob] ^ P2 � [Xsc;Xod]
then op1; op2; : : : ; opn

end

Here btam is the name of the BTAM command; X1, X2, : : : , Xk are formal

parameters whose types are respectively t1, t2, : : : , tk; r1, r2, : : : , rm are rights;

and s1, s2, : : : , sm and o1, o2, : : : , om are integers between 1 and k. The predicate

of the command tests at most two cells represented by [Xsa;Xob] and [Xsc;Xod].

P1 and P2 both represent a set of rights. The body of the command btam has

primitive operations which can modify multiple cells. The commands review and

share-ownership given earlier are BTAM commands as they test for one cell and two

cells respectively.

15

Just as Unary TAM and Binary TAM are de�ned as TAM with only the ability

to test for at most one and two cells respectively, we de�ne KTAM to be same as

TAM with the ability to test for at most K cells.

In section 7.2 we prove that UTAM and BTAM are weakly equivalent to TAM

in expressive power, and we also conjecture that UTAM and BTAM (and in general

KTAM) are not strongly equivalent to TAM in terms of expressive power. 2

2.2 Augmented TAM (ATAM)

ATAMwas de�ned in [AS92b] to be TAM extended with ability to test for the absence

of a right in a cell of the access matrix. In other words, a test of the form ri =2 [Xsi ;Xoi]

may be present in the condition part of ATAM commands. In this thesis we show

that adding testing for absence of rights does increase the expressive power of TAM.

We prove in chapter 4 that ATAM is weakly equivalent but not strongly equivalent

to TAM in terms of expressive power. We also show in chapter 5 (informally) that

dynamic separation of duties requires the ability to test for absence of access rights.

In particular, we show how transaction control expressions [San88c] can be speci�ed

in ATAM.

2.2.1 Augmented SOTAM (SO-ATAM)

Augmented SOTAM is same as SOTAM with the additional ability to test for absence

of rights. We prove in chapter 6 that SO-ATAM is strongly equivalent to ATAM in

terms of expressive power.

2Chapter 3 gives formal de�nitions of strong and weak equivalence. Intuitively, weak equivalence
is meant to be theoretical equivalence and strong equivalence is meant to be practical equivalence.
Strong equivalence implies weak equivalence but not vice-versa. Whenever we say equivalence, we
understand the equivalence to be strong unless otherwise speci�ed.

16

SOTAM SO-ATAM
(Modi�es one column) (SOTAM with the ability to test for absence of rights)
UTAM U-ATAM
(Tests at most one cell) (UTAM with the ability to test for absence of rights)
BTAM B-ATAM
(Tests at most two cells) (BTAM with the ability to test for absence of rights)
KTAM K-ATAM
(Tests at most K cells) (KTAM with the ability to test for absence of rights)

Table 2.1: Variations of TAM and ATAM

2.2.2 Augmented Unary TAM (U-ATAM), Augmented Binary TAM (B-

ATAM) and K-ATAM

Augmented Unary TAM (U-ATAM) is same as ATAM except that the commands

have the ability to test for at most one cell. The earlier UTAM command utam

with its predicate having the ability to test for absence of rights is an example of an

U-ATAM command.

Similarly, augmented Binary TAM (B-ATAM) is same as ATAM except that

the commands have the ability to test for at most two cells. The earlier BTAM

command btam with its predicate having the ability to test for absence of rights is

an example of an B-ATAM command. We prove in chapter 6, U-ATAM (and hence

B-ATAM) is strongly equivalent to ATAM in terms of expressive power.

Table 2.1 lists di�erent variations of TAM and ATAM de�ned in this chapter.

In this thesis, we compare the expressive power of TAM and ATAM. We also compare

the expressive power of all the models given in table 2.1 with respect to TAM and

ATAM. The expressive power results proved in this thesis are summarized in table 2.2.

17

Expressive Power of TAM and ATAM

TAM 6�strongly ATAM
TAM �weakly ATAM

Expressive Power of ATAM and its Variations

ATAM �strongly SO-ATAM
ATAM �strongly U-ATAM

Expressive Power of TAM and its variations

TAM �strongly SOTAM
TAM �weakly UTAM

TAM 6�strongly UTAM (conjecture)
TAM 6�strongly KTAM (conjecture)

Table 2.2: Summarized Results

Chapter 3

Expressive Power of Access Control Models

As mentioned in chapter 1, access control models should have adequate expressive

power, i.e., they should state policies of practical interest. One measure of an expres-

sive power of a model is relative and is measured in terms of the expressive power of

another model. Usually when a model is said to be equivalent to another in expressive

power, it has simply been perceived that those two models enforce the same policies.

In this chapter we give a rigorous formalism to compare the expressive power of two

models.

Section 3.1 de�nes an access control model. Section 3.2 de�nes the notion of

simulation between two systems. Finally section 3.3 gives the de�nitions to compare

the expressive power of two models.

3.1 Access Control Models

In this thesis we will be comparing the expressive power of access control models.

In general, we compare the expressive power between the Augmented Typed Access

Matrix Model (ATAM) and the models obtained by enforcing some restrictions on

it. ATAM represents the distribution of rights by an access matrix and this matrix

is changed by means of state-changing commands.

In this section, we formally de�ne what an access control model is. Most of

the de�nitions de�ned in this section were informally introduced in chapter 2.

18

19

De�nition 1 (Subject) : A subject is anything, that can possess access rights in

the system.

A subject is usually a a process (program or application) executing on behalf

of a user in the system. A subject can also be a passive entity, such as a directory.

De�nition 2 (Object) : An object is anything on which a subject can perform op-

erations.

Usually objects are passive, for example �les and directories are objects. A

subject can also be an object, e.g., a process may have suspend and resume operations

executed on it by some other process. In general, subjects are viewed as a subset of

the objects.

De�nition 3 (Rights) : Each system has a set of rights, R. The presence or absence

of a right allows a subject to perform some operations (which may or may not change

the access matrix).

The access rights of subjects to objects are conceptually represented by an

access matrix.

De�nition 4 (Access matrix) : The access matrix has a row and a column for

each subject, and a column for each object. The [X,Y] cell contains rights which

subject X possesses for object Y. Every subject is also an object but not vice versa. 1

De�nition 5 (Strong Typing) : Each subject or object is created to be of a speci�c

type, which cannot be changed.

1In some cases it is convenient to assume every object is also a subject. This can be done without
loss of generality as TAM subjects are not necessarily active entities.

20

The HRU model can be considered to have all objects and subjects of a type

and hence it still quali�es under the de�nition of strong typing.

De�nition 6 (State) : The state of a system is given by the four tuple (OBJ, SUB,

t, AM) interpreted as follows:

1. OBJ is the set of objects.

2. SUB is the set of subjects, SUB � OBJ.

3. t: OBJ ! T, is the type function which gives the type of every object.

4. AM is the access matrix, with a row for every subject and a column for every

object.

The state of the system is changed by means of commands.

De�nition 7 (State Changing Commands or Command De�nition) : A state

changing command has the following format:

command �(X1 : t1;X2 : t2; : : : ;Xk : tk)
if predicate
then op1; op2; : : : ; opn

end

The �rst line of the command states that � is the name of the command

and X1;X2; ::::;Xk are the formal parameters. The second line is the predicate and

is called the condition of the command. The condition tests for presence/absence

of rights in the access matrix. The third line is called the body of � which has

a sequence of primitive operations; enter, delete, destroy and create operations (as

de�ned in chapter 2). Commands can also be unconditional.

21

A command is invoked by substituting actual parameters of the appropriate

types for the formal parameters. The condition part of the command is evaluated

with respect to its actual parameters. The body is executed only if the condition

evaluates to true.

De�nition 8 (Command Invocation) : A command is said to be invoked if it is

executed with some actual parameters.

From now on whenever we say a command, we simply mean a command with

formal parameters and when we say an invoked command, we mean a command with

some actual parameters.

De�nition 9 (Scheme) : The rights, types and the state changing commands com-

bined are called the scheme. These do not change.

De�nition 10 (System) : A scheme together with an initial state is a system.

The system evolves as the state of the system keeps changing through the state

changing commands.

De�nition 11 (Access Control Models) : An Access control model is de�ned by

enforcing restrictions on the general structure of commands, given in de�nition 7.

The Typed Access Matrix Model (TAM) and other models de�ned in chapter 2

are examples of access control models.

In order to prove that one model is equivalent to another, we need to prove

that for every system in one model, there is an equivalent system in another and vice

versa. To prove the equivalence of two systems and two models, we need to formalize

the notion that one system simulates another. The next section de�nes the notion of

one system simulating another.

22

3.2 Simulation of Systems

This section �rst describes some de�nitions which are used in de�ning the semantics

of one system simulating another and it then de�nes what it is meant by one system

simulating another

De�nition 12 (Original and Simulation Systems) : The system that is being

simulated is the original system, denoted A, and the system implementing the simu-

lation, is called the simulation system, denoted B.

De�nition 13 (Mapping Between Schemes) : Scheme A and scheme B should

satisfy the following in order for B to Map A:

(1) RA � RB

(2) TA � TB

(3) cAi 7! fTi; Fig and the 7! function is Disjoint and Proper.

Condition (1) indicates that every right in the original system is also in the

simulating system. The additional rights in B are usually present due to bookkeep-

ing details in the simulation of A by B. The intuition behind this is that if some

right/rights in B represent a right a of A, then those rights can be replaced by the

same right a in B. Hence, to make simulations easier to understand it is a reasonable

assumption to represent rights in A with the same rights in B.

Condition (2) indicates that every type de�ned in the original system is also

de�ned in the simulating system and there might be additional types de�ned in B

due to some bookkeeping. The intuition behind these is that if a subject S1 of type

s1 in A is represented by one or more subjects of a type or types, then those subjects

can be represented by S1. To make simulations easier to understand, it is reasonably

to assume that the subject is represented by S1 rather than some other subjects.

23

Condition (3) indicates the following:

� Every command cAi of A is mapped to two partial orders of commands Ti and

Fi in B2. The partial order Ti corresponds to the successful execution of the

mapped command cA
i and the other one Fi corresponds to the unsuccessful

execution of cAi. The commands in the partial orders Ti and Fi are given

by commandsC1
it; C2

it; : : : ; Cp
it and commands C1

if ; C2
if ; : : : ; Cq

if respectively

(where i corresponds to i of command cA
i and t, f correspond to Ti and Fi

respectively). The partial orders Ti and Fi specify the order of commands to be

executed.

� For each parameter of a command in A, its corresponding parameter in all the

mapped commands in B, i.e., if a command in cAi has a parameter S1, then the

mapping indicates which parameter in all the commands mapped from cA
i is

mapped to S1.

� A successful execution of a command cA
i in B is completed only if one of the

commands in Ti which do not have any successors execute. Similarly an un-

successful execution of a command cA
i in B is completed only if one of the

commands in Fi which do not have any successors execute.

� The mapping of commands is also Disjoint and Proper. The below two de�ni-

tions explain what Disjoint and Proper mapping mean.

2We actually could map every command of A to a single partial order rather than two, but to
make it easier to understand we map every command of A to two partial orders. In most of the
simulations (encountered in this thesis, and in general) a command of A is mapped to a single partial
order which indicates successful execution. In these cases an unsuccessful execution does not require
any commands in the simulation. In the more general case the predicate in the original command is
tested by multiple commands in the simulation. If this test eventually fails, we need the Fi partial
order to restore the state prior to the testing.

24

De�nition 14 (Disjoint Mapping) : The mapping function 7! is Disjoint for all

commands cAi and cA
j of system A, such that cAi 6= cA

j and cA
i 7! fTi; Fig, cAj 7!

fTj; Fjg, there do not exist any two commands from the partial orders in Ti; Fi and

Tj; Fj which are identical.

In other words, the mapping is said to be disjoint if the partial order of com-

mands of B mapped from one command in A is disjoint from any other partial order

of commands of B which are mapped from a di�erent command of A. The intuition

behind this condition is that in A, there wouldn't be two di�erent commands with

identical parameters, predicate and body (even if there are, these will be mapped to

disjoint commands).

De�nition 15 (Proper Mapping) : For all commands cAi of system A such that

cA
i 7! fTi; Fig, if there exists a parameter P in commands in the partial orders in

Ti; FI, which is not a parameter in cA
i, then P 2 TB-TA.

The de�nition indicates that whenever there is a parameter P in a command

belonging to a partial order in Ti or Fi which is mapped from a command cA
i, and

P is not a parameter in cA
i, then P should belong to TB-TA. In simple words the

above de�nition indicates that mapping is proper if all the additional parameters in

B belong to TB-TA. This simply means that any parameter in a command of B which

is not in a command mapped from A, should be one of the additional types of B. 3

De�nition 16 (Con
icting Commands) : Two invoked commands are said to

con
ict if they both modify the same cell, or if one of them tests a cell and the other

modi�es the same cell.

3As rights are not parameters we do not address rights here. But we address this issue with
respect to rights in the de�nition of simulation given later in this section, where we make sure that
rights not entered/deleted in A are also not entered/deleted in B.

25

De�nition 17 (History) : If C = fC1; C2; : : : ; Cng is a set of invoked commands.

A history H over C is a partial ordering relation <H on C where for any two con-

icting commands Ci; Cj 2 C, either Ci <H Cj or Cj <H Ci.

The de�nition for history says that the ordering of every pair of con
icting

invoked commands is determined by <H , i.e., if Ci <H Cj, this indicates that exe-

cution of Ci is complete before the start of execution of Cj. A history is not a total

order as the order of non-con
icting invoked commands is not important (i.e., we can

assume that non-con
icting invoked commands can execute concurrently). A history

indicates the order in which the operations of the invoked commands were executed

relative to each other.

We now use the following commands to illustrate the de�nitions given in this

section. Say command c1 of A is mapped to C1 and C2 of B and command c2 is

mapped to C3 and C4. All the commands given below are invoked commands.

command c1 (S1 : s;O1 : o; S2 : s;O2 : o)

if a =2 [S1; O1] ^ c 2 [S2; O2]then

enter a in [S1; O1];

enter b in [S1; O1];

enter b in [S2; O2];

end

command c2 (S1 : s;O1 : o; S2 : s;O2 : o)

if a =2 [S1; O2] ^ a =2 [S2; O1] ^ a 2 [S1; O1] ^ a 2 [S2; O2]then

enter c in [S2; O2];

enter a in [S1; O2];

enter a in [S2; O1];

end

26

command C1 (S1 : s;O1 : o)

if a =2 [S1; O1]then

enter a in [S1; O1];

enter b in [S1; O1];

end

command C2 (S2 : s;O2 : o)

if c 2 [S2; O2]then

enter b in [S2; O2];

end

command C3 (S1 : s;O1 : o; S2 : s;O2 : o)

if a 2 [S1; O1] ^ a 2 [S2; O2]then

enter c in [S2; O2];

end

command C4 (S1 : s;O1 : o; S2 : s;O2 : o)

if a =2 [S1; O2] ^ a =2 [S2; O1]then

enter a in [S1; O2];

enter a in [S2; O1];

end

Example of histories are (C1C2)(C3C4) and (C4C1)C3C2. Here the invoked

commands in the parenthesis indicate that they could be executed in any order. Since

C1; C2 and C4 do not con
ict with each other and only C1 and C2 con
ict with C3,

(C1C2)(C3C4) and (C4C1)C3C2 are histories. But (C1C3)(C2C4) is not a history

as it doesn't specify the order of two con
icting invoked commands C1 and C3.

De�nition 18 (Equivalence of Histories of the same system) : We de�ne two

histories H and H 0 of B to be equivalent i�:

27

1. they are de�ned over the same set of invoked commands and

2. they order con
icting invoked commands in the same way.

The idea underlying this de�nition is that the outcome of a concurrent ex-

ecution of invoked commands depends on the relative order of con
icting invoked

commands. To see this, observe that executing two non-con
icting invoked com-

mands in either order has the same e�ect on the protection state. Conversely, the

protection state depends on the order of execution of any two con
icting operations.

For example the history (C1C2)(C3C4) is equivalent to history (C2C1)(C3C4)

as the commands C1; C2 and C4 do not con
ict with each other and only C1 and C2

con
ict with C3 and they both execute before C3 in both the histories. The histories

(C1C2)(C3C4) and C3(C1C2C4) are not equivalent as in one history C3 < C1 and

in the other C1 < C3, and C3 con
icts with C1.

De�nition 19 (Concurrent History) : If in a history H of B, if there exists com-

mands Cpi, Cqi in either Fi or Ti and if there exists commands Crj, Csj in either Fj

or Tj, and if Cpi <H Crj and Csj <H Cqi, then the history H is called Concurrent.

The execution of invoked commands in B is said to be Concurrent, if B �rst

executes an invoked command from a partial order (either Fi or Ti) and if some other

invoked command of a di�erent partial order (either Fj or Tj) executes before the

execution of all the invoked commands from partial order represented by either Fi or

Ti. In simple words, a history is concurrent if there is interleaving of commands from

two di�erent partial orders.

The history C1C3(C2C4) is a concurrent history as C1 < C3, C3 < C2, and

due to the fact that C1 and C2 are mapped from c1, and C3 is mapped from c2.

28

De�nition 20 (Serial History) : A history H in B is said to be Serial if for all

invoked commands C i of H belonging in either Fi or Ti, and for all invoked commands

Cj of H belonging in either Fj or Tj, if there exists an C i <H Cj then all C i <H Cj.

A history in B is said to be serial if it does not have any interleaving of invoked

commands from two di�erent partial orders.

An example of a serial history is (C1C2)(C3C4) as C1 and C2 execute before

any of C3 and C4.

De�nition 21 (Serializable History) : A history H of B is said to be serializable

if it is equivalent to some serial history.

The history (C1C4C2)C3 is a serializable history as it is equivalent to the

serial history (C1C2)(C3C4). The history C1C3(C2C4) is not a serializable history

as it does not have an equivalent serial history.

De�nition 22 (Complete History) : A history H in B is said to be complete if

for all commands in H, if there exists a command C i in H which belongs to either Fi

or Ti, then there exists a command Cj (belonging to either Fi or Ti) in H, which do

not has a successor in either Fi or Ti.

The de�nition indicates that if an invoked command belonging to a partial

order (either Ti or Fi) is in the history, then there should be an invoked command in

that history which do not has any successors in either Ti or Fi. In simple words, a

history in B is said to be complete if it doesn't have any partial execution of invoked

commands.

Examples of complete histories are (C1C2) and C1C3(C2C4). The history

C1(C3C4) is not complete as C2 is not in the history.

29

De�nition 23 (Completion state) : A state in the history H of B is said to be

complete if that history is complete.

The state at the end of history C1C3(C2C4) is a complete state.

De�nition 24 (Intermediate state) : A state in the history H of B is said to be

intermediate if the history is not complete.

The state at the end of history C1C3C2 is an intermediate state as C4 is not

in the history.

De�nition 25 (Equivalence of Histories of A and B) : A history H of A and

a serial complete history H 0 of B are equivalent if for all commands cAi and cBj in H,

such that cA
i <H cA

j, then in H 0, for all commands C i 2 T i and for all commands

Cj 2 T j, C i <H 0 Cj.

A history H of A and a serial complete history H0 of B are equivalent if the

order of commands in H is same as the order of their mapping commands in H0.

The history c1c2 of A is equivalent to history (C1C2)(C3C4) of B.

De�nition 26 (Complete Extension) : A complete extension is de�ned as a his-

tory obtained by extending an incomplete history to a complete history.

3.2.1 Formal De�nition of Simulation

This section de�nes what is meant by one system simulating another and it also

explains the semantics of this de�nition.

De�nition 27 (Simulation) : A system B simulates system A i� the following is

satis�ed:

30

1. Scheme of A maps to scheme of B (def 13).

2. 8 histories H of A, 9G a serial history of B, and G is equivalent to H (def 25).

3. 8 complete histories G of B, 9 complete serial history G0 of B, such that G0 is

equivalent to G, and 9 H of A such that G0 is equivalent to H.

4. 8 incomplete histories U of B, 8 complete extensions U 0 of U, 9 complete serial

history G0 of B, such that G0 is equivalent to U 0, and 9 H of A such that G0 is

equivalent to H.

5. 8 incomplete histories U of B, 9 complete extension U0 of U.

6. The following condition for the states should hold.

At completion states AM [X;Y]A = AM [X;Y]B \RA

At intermediate states AM [X;Y]preA � AM [X;Y]B \ RA or AM [X;Y]postA �

AM [X;Y]B \RA

where AM [X;Y]preA is the state in A before an execution of an invoked command

and AM [X;Y]postA is the state in A after an execution of that particular invoked

command.

The above conditions should be satis�ed in order for B to simulate A. We now

explain the intuition behind these conditions.

The �rst one indicates that scheme of B should simulate scheme of A according

to de�nition 13. The intuition behind these is given earlier.

The second condition indicates that for all histories of A, there should exist

at least one equivalent serial history of B. This is obvious from the fact that in order

for B to simulate A, B should be able to do whatever A can and so for every history

31

in A, there should be at least one equivalent serial history in B (and there might be

many other histories in B which are all equivalent to that serial history).

The third condition indicates that all complete histories of B should have an

equivalent serial history in B, which is equivalent to some history of A. The need for

this condition is from the fact that in order for B to simulate A, it shouldn't be able

to do more than what A can.

The fourth condition indicates that for all incomplete histories of B and for

all their complete extensions, there should exist at least one equivalent serial history

in B, which is equivalent to a history of A. The reason behind this condition is the

same as the third condition except that it accounts for all the incomplete histories of

B. i.e., it makes sure that there doesn't exist any incomplete history (or its complete

extension) in B which doesn't have an equivalent history in A.

The �fth condition also ensures that in order for B to simulate A, there cannot

be any deadlocks in B (i.e., all incomplete histories in B can be extended to complete

histories).

The �nal condition gives the relationship between the states of A and B at

both intermediate and completion states. The intuition for having this condition for

intermediate and completion states is given below.

At completion states, the matrix of A and the matrix of B should be identical

with respect to the rights and subjects of A. i.e., for all cells AM [X;Y] of both A

and B, the contents should be same with respect to the rights de�ned in A and might

not with additional rights de�ned in B. This should be obvious from the fact that A

and B should have the same behavior with respect to rights de�ned for system A.

At intermediate states the following condition should hold true:

AM [X;Y]preA � AM [X;Y]B \ RA or AM [X;Y]postA � AM [X;Y]B \ RA

32

whereAM [X;Y]preA is the state in A before an execution of a command and AM [X;Y]postA

is the state in A after an execution of that particular command. This condition en-

sures that the following hold:

1. No right de�ned in A is entered/deleted in B which is not entered/deleted in A.

The reason for this is obvious from the fact that B shouldn't be able to reach a

state which cannot be reached in A, even if this is an intermediate state in B.

2. Rights which cannot coexist in A, shouldn't coexist in an intermediate state

in B (even though they might not coexist at the completion state in B). This

would take care of the fact that B cannot reach an intermediate state that A

would not allow. Consider for example that A checks for a right a in a cell and

if so, it deletes a and gets right b in return. In A, if the rights a and b do not

coexist, then this condition would ensure that even at intermediate states of B

these rights do not coexist. If it was not for this condition, B could have rights

a and b together in an intermediate state. But in A this is not allowed in any

state and hence this should not be allowed in B also.

The next section formalizes the notion of expressive power.

3.3 Expressive Power of Models

This section gives de�nitions to compare the expressive power of two models.

De�nition 28 (Scheme Based Simulation) : If the scheme for the simulation

system is derived from the scheme of the original system, then we call the simulation

to be scheme based.

33

The above de�nition indicates that the scheme of the simulation system can

be derived only from the scheme of the original system and is independent of the

initial state of the original system.

De�nition 29 (Bounded Simulation) : To simulate an execution of a command

in the original system, the simulating system can execute each of its mapping com-

mands with at most one set of actual parameters.

The above de�nition indicates that if a command executes in A, then that

command is simulated in B by executing each command from a mapping partial order

with at most one set of actual parameters. This de�nition indicates that bounded

simulation would not allow a command being simulated by some unbounded number

of commands. This de�nition is di�erent from one which enforces every command to

execute at most once as this stricter de�nition wouldn't allow commands to execute

more than once with the same parameters and this de�nition wouldn't apply to

monotonic commands. To allow such cases, this de�nition allows a mapping command

in B to execute at most with one set of actual parameters.

Finally we formalize the notion of expressive power.

De�nition 30 (Weakly Expressive) : Model � is weakly expressive as model �

i� the following holds: For every system A in model � there exists a system B in

model � such that system B is a scheme based simulation of system A.

De�nition 31 (Strongly Expressive) : Model � is strongly expressive as model

� i� the following holds: For every system A in model � there exists a system B in

model � such that system B is a bounded and scheme based simulation of system A.

34

De�nition 32 (Strong Equivalence of two Models) : Model � is strongly equiv-

alent to model � i� model � is as strongly expressive as model � and model � is as

strongly expressive as model �

De�nition 33 (Weak Equivalence of two Models) : Model � is weakly equiv-

alent to model � i� both � and � are weakly expressive as the other.

We will usually use the term equivalent to mean strongly equivalent. Where

the context requires us to carefully distinguish between strong and weak equivalence

we will be appropriately precise.

The de�nition of strong equivalence requires that a command in a system be

simulated by a constant number of commands (rather than some arbitrary number

of commands which depend on the state). This requirement is usually needed in real

world practical applications. Hence we understand strong equivalence to be a practical

equivalence. Similarly we understand weak equivalence to be a theoretical equivalence.

Any two models which are strongly equivalent are also weakly equivalent, but two

models which are weakly equivalent may or may not be strongly equivalent. In this

thesis we will show there are models which are strongly equivalent and models which

are only weakly equivalent. A central result of this thesis is that TAM and ATAM are

only weakly equivalent. The construction which proves the weak equivalence of TAM

and ATAM illustrate the fact that it is important that models be strongly equivalent

rather than weakly equivalent. Hence in this thesis we de�ne two types of equivalence

between models.

Chapter 4

Expressive Power of ATAM and TAM

Recall that ATAM is same as TAM with the additional ability to test for absence of

access rights. In this chapter, two important results are proved regarding TAM and

ATAM. The �rst result is the weak equivalence of TAM and ATAM and this result

has appeared in [SG93b]. The equivalence of TAM and ATAM is weak due to the

fact that the simulation used in proving the equivalence is not bounded. The second

result is the strong non-equivalence of TAM and ATAM. This result indicates that

TAM and ATAM are not strongly equivalent as there can be a system in ATAM for

which there cannot be a bounded simulation in TAM. This chapter is organized as

follows. Section 4.1 proves the weak equivalence of TAM and ATAM and section 4.2

proves the strong non-equivalence of TAM and ATAM.

4.1 Weak Equivalence of ATAM and TAM

In this section we give a construction to show the weak equivalence of TAM and

ATAM.We �rst show in section 4.1.1 that ATAM schemes without create or destroy

operations can be reduced to TAM schemes. We than show, in section 4.1.2, how

ATAM schemes with just create and destroy commands can be simulated in TAM.

Finally in section 4.1.3 we give a procedure which converts any given ATAM scheme

into an equivalent TAM scheme. This procedure is not proper and is given here for

simplicity. We illustrate at the end of this section how the procedure can be made

35

36

proper.

4.1.1 Equivalence Without Create or Destroy Operations

We now prove the equivalence of TAM and ATAM in the absence of create and destroy

operations. This is done by giving a construction to construct a TAM system that

can simulate any given ATAM system. Recall that ATAM extends TAM by allowing

commands to test for absence of access rights in the condition part. Thus, TAM is a

restricted version of ATAM. To establish equivalence we therefore need to show that

every ATAM system can be simulated by a TAM system.

The basic idea in the construction is to represent the absence of rights in the

ATAM system by the presence of complementary rights in the TAM system. Suppose

that the given ATAM system has set of rights R. In the TAM simulation we include

the rights R, as well as the complementary rights �R = f�x j x 2 Rg. The construction

will ensure that

x 2 [Si; Oj], �x =2 [Si; Oj]

The initial state of the TAM access matrix has all the rights of the initial matrix of

ATAM, as well as all the complementary rights implied by the above equation.

If the ATAM system has no creation operations, the following procedure con-

structs an equivalent TAM system:

� Whenever a right x is entered in a cell of the ATAM system, it is also entered in

the identical cell in the TAM system; but, moreover, the complementary right

�x is deleted from that cell in the TAM system.

� Similarly whenever a right x is deleted from a cell of the ATAM system, it is

deleted from the identical cell in the TAM simulation. At the same time, the

37

complementary right �x is entered in that cell in the TAM simulation.

� Also if an ATAM command tests for the absence of some rights, than the cor-

responding TAM command produced by our construction tests for the absence

of rights by means of testing for presence of complementary rights. For exam-

ple, the test x =2 [S;O] in an ATAM command will be simulated by the test

�x 2 [S;O] in the TAM system.

Theorem 1 For every ATAM system A the construction outlined above produces

an equivalent TAM system B.

Proof: In order to prove that the construction outlined above produces an equivalent

TAM system B, it is enough to show that TAM system B can simulate ATAM

system A. In order to show this, we need to show that de�nition 27 is satis�ed. As

every ATAM command is mapped to a single TAM command, conditions 2 to 5 of

de�nition 27 are trivially satis�ed. Condition 6 of de�nition 27 is satis�ed as the

TAM system will maintain the invariant x 2 [Si; Oj], �x =2 [Si; Oj] for all cells in the

access matrix. 2

4.1.2 Equivalence With Create and Destroy Operations

The occurrence of create operations in the given ATAM system considerably compli-

cates the construction. We will focus only on creation of subjects, since every ATAM

subject or object will be simulated in the TAM system as a subject (i.e., every column

has a corresponding row in the access matrix). In other words the access matrix of

the TAM system is square. This entails no loss of generality, since TAM subjects are

not necessarily active entities.

A primitive \create subject Sj" operation introduces a new empty row and

column in the access matrix. To follow through with the complementary rights con-

38

struction, we need to introduce the �R rights in every cell involving Sj. The number

of primitive operations required to do this is directly proportional to the number of

subjects existing, at that moment, in the system. Since this is a variable number,

a single TAM command cannot achieve this result. Instead we must use a sequence

of TAM commands. The number of TAM commands required is unbounded, being

proportional to the size of the access matrix.

Linked List Structure

To facilitate the TAM simulation, our construction organizes the subjects in a linked

list structure, which can be traversed by following its pointers. The pointers, and

the head and tail locations of the list, are easy to implement by rights in the access

matrix. New subjects are inserted at the tail of the list when they are created. In

order to �ll up the row and column for the new subject with the complementary rights

�R, the list is traversed from head to tail �lling in �R in the cells for the new subject

along the way. Hence three new additional rights head, tail, and next are introduced

in the initial state of the matrix. The right head in a cell [Si; Si] of the matrix implies

that Si is the �rst subject in the linked list. Similarly, the right tail in a cell [Si; Si]

of the matrix implies that Si is the last subject in the linked list. The right next in

a cell [Si; Sj] of the matrix implies that Sj is the successor to Si in the linked list (or

equivalently that Si is the predecessor to Sj in the list).

A create operation in an ATAM system is simulated by multiple commands

in the TAM system. The key to doing this successfully is to prevent other TAM

commands from interfering with the simulation of the given ATAM command. The

simplest way to do this is to ensure that ATAM commands can be executed in the

TAM simulation only one at a time. To do this we need to synchronize the execution of

successive ATAM commands in the TAM simulation. Thus the problem of simulating

39

SNC S1 S2 : : : Sn

SNC token

S1 head next

S2

: : :

Sn tail

Figure 4.1: Initial Access Matrix of the TAM Simulation

ATAM in TAM requires solution of a synchronization problem. Synchronization is

achieved by introducing an extra subject called SNC, and an extra right token as

shown in �gure 4.1. The role of SNC is to sequentialize the execution of simulation

of ATAM commands in the TAM system.

The type of SNC is snc, and is assumed, without loss of generality, to be

distinct from any type in the given ATAM system. It is also assumed, without loss of

generality, that rights next, head, tail, token, C and tr are distinct from the rights in

the given ATAM system. The rights C and tr are used for \book-keeping" purposes

in the simulation, as will be explained below.

To summarize, the initial state of the TAM system consists of the initial state

of the given ATAM system augmented in three respects.

� First, an empty row is introduced for every ATAM object, which does not have

a row in the given ATAM access matrix. The head, tail and next rights are

introduced to order the subjects in a linked list.

� Secondly, complementary rights are introduced as per the following equation:

8c 2 R;x 2 [Si; Sj], �x =2 [Si; Sj]

40

� Thirdly, the SNC subject is introduced in the access matrix with [SNC;SNC]=

ftokeng, and all other cells involving SNC being empty.

Simulation of ATAM create commands

We now consider how the ATAM command CCreate given below can be simulated

by several TAM commands.

command CCreate (S1 : s1; S2 : s2; : : : ; Sm : sm; Sc : sc)

if �(S1; S2; : : : ; Sm) then

create subject Sc of type sc;

end

The name CCreate is a mnemonic for conditional creation. This command tests for

the condition �(S1; S2; : : : ; Sm). If the condition is true, the command creates a new

subject Sc.

The TAM simulation of CCreate proceeds in three phases, respectively as

illustrated in �gure 4.2, �gure 4.3 and �gure 4.4. In these �gures we show only the

relevant portion of the access matrix, and only those rights introduced speci�cally

for the TAM simulation. Complementary rights are shown only in the cells involving

the newly created subject Sc. It is understood that the original ATAM rights are

distributed exactly as in the ATAM system, along with complementary rights required

to maintain the equation x 2 [Si; Sj], �x =2 [Si; Sj]. In the �gures, n represents the

total number of subjects in the system prior to the create operation.

The �rst phase consists of a single TAM command CCreate-I which tests

whether (i) the condition of the ATAM command �(S1; S2; : : : ; Sm) is true, and (ii)

whether token 2 [SNC;SNC]. The former test is obviously required. The predicate

� may involve tests for absence of access rights. Hence, in the TAM simulation we

41

SNC S1 S2 : : : Sn

SNC token

S1 head next

S2

: : :

Sn tail

(a) Prior to Phase I

SNC S1 S2 : : : Sn Sc

SNC

S1 head next

S2

: : :

Sn tail

Sc tr

(b) After Phase I

Figure 4.2: TAM Simulation of the ATAM Command CCreate: Phase I

replace � by �0, which is obtained by substituting tests for presence of complimentary

rights in place of tests for absence of rights in �. The latter test for the token right in

[SNC;SNC] ensures that the TAM simulation of CCreate can commence only if no

other ATAM command is currently being simulated. It also ensures that once phase

I of the simulation of CCreate has started, the simulation will proceed to completion

before simulation of another ATAM command can begin. The phase I TAM command

is given below.

command CCreate-I(S1 : s1; S2 : s2; ::Sm : sm; Sc : sc,SNC : snc)

if �0(S1; S2; : : : ; Sm) ^ token 2 [SNC;SNC] then

delete token from [SNC;SNC];

create Sc;

42

enter tr in [Sc; Sc];

end

The body of this command deletes token from [SNC;SNC] and creates subject Sc.

It also enters tr in [Sc; Sc] indicating that all cells corresponding to Sc have to be

traversed. The states of the access matrix, before and after execution of CCreate-I,

are outlined in �gure 4.2(a) and �gure 4.2(b) respectively.

In phase II of the simulation the right C is passed, in turn, from [Sc; S1]

to [Sc; S2] and so on to [Sc; Sn]. A right C in a cell of a matrix indicates that

all complementary rights have to be introduced in that cell. Hence complementary

rights �R are introduced in the cell from which the right C is removed. The phase II

commands are given below. The type of subjects Si and Sr indicated in the commands

by T � snc implies that these subjects can be of any type in T � snc (i.e., any type

other than snc). Strictly speaking, we should have a separate command for each type

in T � snc, but we allow this slight abuse of notation to simplify the presentation.

command CCreate-1-II(Sc : sc; Si : T � snc)

if tr 2 [Sc; Sc] ^ head 2 [Si; Si] then

enter C in [Sc; Si];

end

command CCreate-2-II (Sc : sc; Si : T � snc; Sr : T � snc)

if tr 2 [Sc; Sc] ^ next 2 [Si; Sr] ^ C in [Sc; Si] then

enter �R in [Sc; Si];

enter �R in [Si; Sc];

delete C from [Sc; Si];

enter C in [Sc; Sr];

end

43

SNC S1 S2 : : : Sn Sc

SNC

S1 head next

S2

: : :

Sn tail

Sc C tr

(a) After execution of CCreate-1-II

SNC S1 S2 : : : Sn Sc

SNC

S1 head next �R

S2

: : :

Sn tail

Sc �R C tr

(b) After one execution of CCreate-2-II

SNC S1 S2 : : : Sn Sc

SNC

S1 head next �R

S2 �R

: : : �R

Sn tail

Sc �R �R �R C tr

(c) End of phase II

Figure 4.3: TAM Simulation of the ATAM Command CCreate: Phase II

44

SNC S1 S2 : : : Sn Sc

SNC token

S1 head next �R

S2 �R

: : : �R

Sn next, �R

Sc �R �R �R �R tail, �R

Figure 4.4: TAM Simulation of the ATAM Command CCreate: Phase III

The command CCreate-1-II tests if phase I is completed by looking for right tr, and

than enters right C in the head column of the list of subjects. Command CCreate-

2-II introduces complementary rights in all cells involving Sc except the tail subject

by passing right C along the linked list of subjects. The insertion of complimentary

rights in the tail column of the linked list is deferred until Phase III. The execution

of Phase II commands is illustrated in �gure 4.3.

In phase III of the simulation, the new subject Sc is inserted at the end of the

linked list. At the same time, complementary rights are introduced in the previous

and the new tail cells. Also token is introduced in the cell [SNC;SNC] indicating

that the simulation of CCreate is complete. The Phase III command is given below.

Command CCreate-III(Sc : sc; Sn : T � snc; SNC : snc)

if tr 2 [Sc; Sc] ^ C 2 [Sc; Sn] ^ tail 2 [Sn; Sn] then

delete C from [Sc; Sn];

enter �R in [Sc; Sn];

enter �R in [Sn; Sc];

enter �R in [Sc; Sc];

enter next in [Sn; Sc];

45

delete tail from [Sn; Sn];

enter tail in [Sc; Sc];

delete tr from [Sc; Sc];

enter token in [SNC;SNC];

end

Prior to execution of the CCreate-III command we have the situation shown in �g-

ure 4.3(a). After execution of CCreate-III we have the situation of �gure 4.4. The

TAM simulation is now ready to proceed with execution of another ATAM command.

Simulation of ATAM destroy commands

In order to simulate creation,we have seen that the subjects need to be related in a

linked list structure. Hence, whenever a subject is destroyed the linked lists should

still be maintained. For instance, when subject S3 is destroyed in context of �gure 4.5

(a), we should maintain the linked list as shown in �gure 4.5(b).

To be concrete, consider the following ATAM command whose nameCDestroy

is a mnemonic for conditional destroy.

command CDestroy (S1 : s1; S2 : s2; ::Sm : sm; Sd : sd)

if �(Sd; S1; S2; : : : ; Sm) then

destroy subject Sd;

end

This command can be simulated by a single TAM command, since maintenance of the

linked list requires adjustment to a �xed number of cells of the access matrix. How-

ever, we do need several variations of the TAM command, depending upon whether

the subject being destroyed is in the middle, or at the head or tail of the linked

46

SNC S1 S2 S3 S4 S5

SNC token

S1 head next

S2 next

S3 next

S4 next

S5 tail

(a) Before destruction of S3

SNC S1 S2 S4 S5

SNC token

S1 head next

S2 next

S4 next

S5 tail

(b) After destruction of S3

Figure 4.5: Destruction of S3

list. We also need a variation to simulate the extreme case where the subject being

destroyed is the only subject in the linked list.

The TAM command to simulate CDestroy, when Sd is in the middle of the

list, is as follows.

command CDestroy-middle (Sd : sd; Sl : T � snc; Sr : T � snc;

S1 : s1; S2 : s2; : : : ; Sm : sm; SNC : snc)

if �0(Sd; S1; S2; : : : ; Sm) ^ token 2 [SNC;SNC] ^ next 2 [Sd; Sr]

^ next 2 [Sl; Sd] then

destroy subject Sd;

enter next in [Sl; Sr];

end

47

The predicate �0 is obtained by substituting tests for presence of complimentary rights

in place of tests for absence of rights in �. The test for the token right ensures that

ATAM commands are simulated one at a time. The tests for next ensure that Sl and

Sr are respectively the predecessor and successor of Sd in the linked list. The body

of the command maintains the linked list.

If Sd is at the head or at the tail of the linked list, we respectively have the

following two commands.

command CDestroy-head (Sd : sd,Sr : T � snc,

S1 : s1; S2 : s2; : : : ; Sm : sm, SNC : snc)

if �0(Sd; S1; S2; : : : ; Sm) ^ token 2 [SNC;SNC] ^ next 2 [Sd; Sr]

^ head 2 [Sd; Sd] then

destroy subject Sd;

enter head in [Sr; Sr];

end

command CDestroy-tail (Sd : sd; Sl : T � snc,

S1 : s1; S2 : s2; : : : ; Sm : sm; SNC : snc)

if �0(Sd; S1; S2; : : : ; Sm) ^ token 2 [SNC;SNC] ^ tail 2 [Sd; Sd]

^ next 2 [Sl; Sd] then

destroy subject Sd;

enter tail in [Sl; Sl];

end

Finally, for the extreme case where Sd is the only subject in the linked list we have

the following TAM command.

command CDestroy-last (Sd : sd, SNC : snc)

if �0(Sd) ^ token 2 [SNC;SNC]^ head 2 [Sd; Sd] ^ tail 2 [Sd; Sd] then

48

destroy subject Sd;

end

4.1.3 Simulation of ATAM schemes

So far we have seen how ATAM commands which do not have create and destroy

operations, and ATAM commands which just have either create or destroy operations

are converted into TAM commands. A general procedure for simulating an arbitrary

ATAM command in TAM can be obtained by combining these ideas. Consider a

ATAM command with multiple operations (i.e., a sequence of enter, delete, create,

and destroy operations). Based on the previous discussion, we know how to simulate

each primitive operation in turn. With some additional \book-keeping" we can keep

track of a \program counter" which moves down the sequence of primitive operations

in the body of the ATAM command, as each one gets simulated.

The procedure given in this section is not proper as some of the parameters

in phases II and phase III commands of the simulating system might not belong to a

type given by (TTAM -TATAM). The procedure given in this section can be easily made

proper. The same procedure can be used with the following additional modi�cations.

� For every subject Si in the initial state an extra subject Si
0

is created and a

right cohort is entered in cell (Si; Si
0

).

� The modi�ed procedure organizes the cohort subjects in the list structure and

not the other subjects. Indirectly the other subjects are arranged in a list

through these cohorts.

� Complementary rights are introduced in the cohort cells. For example, testing

for absence of right a in cell (Si; Sj) is done in ATAM by testing for presence of

complementary right �a in (Si
0

; Sj
0

).

49

� When a right is entered in a cell (Si; Sj) in ATAM, then in TAM its comple-

mentary right is entered in (Si
0

; Sj
0

) along with the right in (Si; Sj). Similarly

when a right is deleted from a cell (Si; Sj), then in TAM that right is deleted

from the same cell and at the same time its complementary right is introduced

in (Si
0

; Sj
0

).

� When a subject is created in ATAM, the commands in TAM to simulate the

creation are almost similar to the commands given earlier. Phase I command

creates a new subject along with its cohort. Phase II and Phase III commands

are same except the parameters are all cohorts and the complementary rights

and all other rights are modi�ed in the cohorts.

� When a subject is destroyed in ATAM, the commands in TAM are similar.

They along with destroying the subject and its cohort make sure that the list

is not broken.

We conclude this section by stating the relationship between the expressive

power of TAM and ATAM.

Theorem 2 TAM and ATAM are weakly equivalent in expressive power, i.e., for

every ATAM system A the construction outlined above produces an equivalent TAM

system B.

Proof: In order to prove that the construction outlined above produces an equivalent

TAM system B, it is enough to show that TAM systemB can simulate ATAM system

A. In order to show this, we need to show that de�nition 27 is satis�ed. Every

command of an ATAM system is mapped to a single partial order of commands (the

partial order corresponds to the successful execution) and also satisfying condition

1 of de�nition 27 (as the construction ensures that mapping is disjoint and proper).

50

The construction ensures that conditions 2 to 5 are satis�ed by simulating a single

ATAM command at a time and by ensuring that once a simulation of a command

has started, the simulation will proceed to completion before simulation of another

ATAM command can begin. Condition 6 of de�nition 27 is satis�ed as the TAM

system maintains the invariant x 2 [Si; Oj] , �x =2 [Si; Oj] for all cells in the access

matrix and as the TAM system behaves exactly like the ATAM system in terms of

rights of ATAM system. 2

All our constructions in this thesis ensure that conditions 2 to 5 are easily

satis�ed by simulating a single command at a time and by ensuring that once a

simulation of a command has started, the simulation will proceed to completion before

simulation of another command can begin.

4.2 Strong Non-Equivalence of ATAM and TAM

It has been shown in the previous section that TAM and ATAM are strongly equiva-

lent in terms of expressive power when there is no creation. In this section, we look

at the relationship between the expressive power of ATAM and TAM when creation

is allowed. We formally prove that ATAM is not strongly equivalent to TAM. We

formally prove the non-equivalence by proving that TAM simulation of ATAM cannot

be bounded. The construction given in the previous subsection is not bounded.

The fact that TAM and ATAM are equivalent (when creation is not allowed)

was demonstrated earlier by introducing complementary rights in the initial state.

Whenever a subject is created, the earlier construction requires that complementary

rights be introduced in every cell of that subject. We prove in this section that this

is not possible in a bounded simulation.

For the System A given below, we prove that there is no strongly equivalent

TAM System B (which is a bounded simulation of A).

51

De�nition of System A

(1) Rights: R=fa,bg

(2) Types: T=fp,c,og

(3) The following are the commands:

command create-object (S : p;O : o)

create O;

end

command create-subject (S : p; Sc : c)

create Sc;

end

command create-subject1 (S : p; Sc : c;O : o)

create Sc;

enter a in [Sc; O];

end

command atam (Sc : c;O : o)

if a =2 [Sc; O]then

enter a in [Sc; O];

enter b in [Sc; O];

end

(4) Initial state of the ATAM system A has object O1 of type o and a subject S of

type p. The subject has right a for object O1. The initial state is shown in �gure 4.6.

We now illustrate the e�ect of the commands given in system A.

52

S : p O1 : o

S : p a

Figure 4.6: Initial state of ATAM system A

The e�ect of command create-object is the creation of a new object and hence

a new column in the matrix. For example after the creation of an object Oc through

command create-object, the initial state of system A evolves to �gure 4.7 (a).

The e�ect of command create-subject is the creation of a new subject and hence

a new row and column in the matrix. For example after the creation of a subject Sc

through command create-subject, the matrix of system A evolves from �gure 4.7 (a)

to �gure 4.7 (b).

The e�ect of command create-subject1 is the creation of a new subject and

hence a new row and column in the matrix. The newly created subject also gets a

right a for its parent object. For example after the creation of a subject Sc through

command create-subject1, system A evolves from �gure 4.7 (b) to �gure 4.7 (c). The

newly created subject Sc gets a right a for the object Oc involved in its creation.

The command atam enters rights a and b in a cell which doesn't has a right a.

For example when the command atam executes with actual parameters Sc and O1,

the matrix evolves from �gure 4.7 (c) to �gure 4.7 (d). We just illustrated the e�ect

of the commands in system A.

We now show that ATAM system A doesn't have any equivalent TAM system

B. Say there exists an equivalent TAM system B. Then according to de�nition 13,

every command of A is mapped to exactly two partial orders of commands of B and

for every successful execution of a command in A, there exists a a corresponding

successful partial order in B. According to lemma 1, the partial order of commands

53

S : p O1 : o Oc : o

S : p a

(a)

S : p O1 : o Oc : o Sc : c

S : p a

Sc : c

(b)

S : p O1 : o Oc : o Sc : c

S : p a

Sc : c a

(c)

S : p O1 : o Oc : o Sc : c

S : p a

Sc : c a, b a

(d)

Figure 4.7: Example of ATAM System A

54

mapped from the successful execution of atam should test for the predicate of atam

(i.e., test for absence of a in a cell).

Lemma 1 B can simulate A only if the partial order mapped from the successful

execution of atam tests for the predicate of atam (the absence of right a in a cell).

Proof: We prove by contradiction. We assume that B doesn't have any commands

which test for absence of a. The partial order mapped from the successful execution

of atam should enter rights a and b in a cell which does not have a. Since none of the

commands test for absence of a, they can enter right b in a cell which already has a.

This cannot be achieved in A as from lemma 2 a cell which has a right a cannot get

a right b. Hence the theorem is true. 2

Lemma 2 Any cell in A which has only right a (and doesn't have right b) can never

get right b.

Proof: A cell in A say [S;O1] of �gure 4.7 (a) has only right a and doesn't have any

rights. We now prove why [S;O1] cannot get a right b. As system A doesn't have any

commands which delete a right a from a cell, the right a can never be removed from

[S;O1]. System A has only one command which enters a right b in a cell and this

command is atam. But as atam tests for absence of right a in a cell before entering

a right b, the cell [S;O1] can never get right b. Hence the lemma is true. 2

According to lemma 1, B can simulate A only if the partial order mapped

from the successful execution of atam tests for the predicate of atam (which is the

absence of a in a cell). The testing for predicate of atam (the absence of a in a cell)

can be done in TAM either through commands which test for presence of rights or by

commands which indicate the absence of a by testing for the existence of a subject

55

(i.e., the encoding of the fact that a is not in a cell should be done either through

testing for presence of rights or through the existence of subjects). The creation of

a new subject Sc in B involves not only creating an empty row and column for Sc,

but also encoding the fact that there are no rights in that row and column. This

encoding is done through some rights or through the existence of subjects. Theorems

3 and 4 prove that, the fact a does not belong to all the cells of Sc cannot be encoded

by either rights or through existence of subjects. These theorems use the fact that

whenever a right a is entered in a cell (which does not have a), either some right is

deleted when a is entered or some subject should be destroyed once a is entered.

Theorem 3 When a subject Sc is created, the encoding of the fact that right a is not

in all the cells of Sc by testing for presence of rights cannot be done in B.

Proof: Say the encoding can be done through testing for presence of rights. i.e., say

B has commands which tests for L cells to indicate the absence of a in a cell. When

a is entered in that cell, then the test in at least one of those L cells is made false.

Say the test is made false in M cells. Then these M cells can be used to indicate the

absence of a in some constant number of cells and this number is a function of M

and N 1.

The initial state has constant cells and they can only represent absence of

rights in a constant number of cells. When a new subject is created, rights can be

only entered in some constant number of cells (as the simulation is bounded and so

only constant number of commands can be used to enter rights in the new cells) . At

1Actually M cells can be used to indicate the absence of a for at most (N !
2!(N�2)!)

M cells, where

N is the number of rights in B. i.e. M cells can at most represent absence of right a in (N !
2!(N�2)!)

M

cells, which is constant as M and N are constants. This equation is derived from the fact every cell
has at most (N !

2!(N�2)!) combinations of sets of rights, where one is not a proper subset of another.

Since rights are removed from M cells, the M cells can represent at most (N !
2!(N�2)!)

M cells.

56

some point, when a new subject is created the system can reach a state where all the

newly created cells would not be encoded of the fact that a is not present in them! 2

Theorem 4 When a subject Sc is created, the encoding of the fact that a is not in a

cell cannot be done through testing for existence of subjects.

Proof: Assume that the theorem is false. i.e., the encoding can be done through

testing for existence of subjects. Then B has commands which indicate the absence

of a in all cells of the created subject by testing for existence of subject or subjects

for each cell. Then there should be a command which has a subject of some type

say sx as its parameter which indicates the absence of a in some cell (Sc; Oi). When

a is entered in (Sc; Oi), then that subject or all the subjects of type sx should be

destroyed. This indicates that for each object we need a di�erent type to simulate

the command atam. As the number of types should be speci�ed in the scheme, there

can be only constant of them. Let the number of these types be �. But B can have

objects greater in number than � and hence there would be a cell where atam cannot

be simulated. Hence the theorem is false. 2

Lemma 1 states that B can simulate A only if the partial order mapped from

the successful execution of atam tests for the predicate of atam (which is the absence

of a in a cell). The predicate of atam can be tested either through testing for presence

of rights or through testing for existence of subjects. Theorems 3 and 4 indicate that

whenever a new subject is created, the encoding of the fact that a is not in all the cells

of the created subject cannot be done either through testing for presence of rights or

through testing for existence of subjects. Hence we conclude that ATAM 6� TAM.

Chapter 5

Dynamic Separation of Duties Based on ATAM

The principal contribution of this chapter is that it demonstrates that specifying

dynamic separation of duties requires the ability to test for the absence of rights

in access control models. It also demonstrates that the ability to test for absence

of rights is needed to ensure that a given subject does not perform two con
icting

operations on the same object.

In this chapter we consider the implementation of separation of duties. Sep-

aration of duties is an important real-world requirement that useful access control

models need to support. The particular separation of duties mechanismwe implement

is the transaction control expression (TCE), introduced in [San88c]. It was shown

in [San88c, San91] that TCEs could easily specify typical transactions in which both

separation and coincidence of duties were clear requirements. In particular, TCEs go

beyond the static separation of duties stipulated by Clark and Wilson [CW87]. Static

speci�cation of separation of duties is too restrictive. For example, in modeling the

common real world scenario in which a subject takes one role with respect to object A

but another role with respect to object B, completely static speci�cation of separation

of duties is inadequate.

The principal contribution of this chapter is that it demonstrates that specify-

ing dynamic separation of duties requires the ability to test for the absence of rights

in access control models. Speci�cally, the ability to test for the absence of a right is

57

58

needed to ensure that a given subject does not perform two con
icting operations on

the same object. This chapter builds upon and extends the constructions outlined in

[AS92b].

This chapter's organization is as follows. Section 5.1 translates the TCE exam-

ples given in [San88c] into an augmented TAM implementation. Section 5.2 summa-

rizes the important points for implementing general TCE expressions in augmented

TAM by automated translation. Finally section 5.3 summarizes this chapter.

5.1 Implementing Transaction Control Expressions

In this section we show how the examples of transaction control expressions given

in [San88c] can be expressed in augmented TAM. A transaction control expression

represents the potential history of an information object. Sandhu [San88c] distin-

guished two kinds of information objects: transient objects which can have a bounded

number of operations applied to them, versus persistent objects which can potentially

have an unbounded number of operations. Transient objects are intuitively modeled

on forms, which are �lled out and after appropriate approvals lead to some action

such as issuing a check. Persistent objects intuitively model books in which account

balances are maintained.

5.1.1 Transient Objects

The classic example of a transient object is a voucher that ultimately results in a

check being issued. The potential history of a voucher is represented by the following

transaction control expression [San88c].

prepare � clerk;
approve � supervisor;
issue � clerk;

59

Each term in this expression has two parts. The �rst part names a transaction. The

transaction can be executed only by a user with role speci�ed in the second part.

For simplicity in discussion assume each user has only one role. So `prepare � clerk'

speci�es that the prepare transaction can be executed on a voucher only by a clerk.

The semi-colon signi�es sequential application of the terms. That is a supervisor

can execute the approve transaction on a voucher only after a clerk has executed the

preceding prepare transaction. Finally, separation of duties is speci�ed by requiring

that the users who execute di�erent transactions in the transaction control expression

all be distinct.

We now show how the given TCE is speci�ed in augmented TAM. We make

use of the following sets of types and rights:

1. Rights R=fprepare, prepare0, approve, approve0, issue, issue0g

2. Types T=fvoucher, clerk, supervisor, managerg, all of which are subject types,

with principal types TP=fclerk, supervisor, managerg

Rights are used as a means of keeping track of the current location in the

progression of a transaction control expression. Undecorated rights, i.e., those rights

without a trailing apostrophe, are used to indicate that current operation in the

transaction control expression is in progress. Decorated rights, i.e., those rights with

a trailing apostrophe, are used to indicate that current operation in the transaction

control expression is complete. The decorated rights are useful in ensuring both

separation and coincidence of duties.

The augmented TAM commands for the voucher transaction control expression

are given below. Each step of the TCE is translated into two commands: the �rst

indicating that the step in question is in progress, and the second indicating that the

step has been completed.

60

(a) command begin-prepare-voucher

(C : clerk; V : voucher)

create subject V ;

enter prepare into [C; V];

end

(a0) command complete-prepare-voucher

(C : clerk; V : voucher)

if prepare 2 [C; V] then

delete prepare from [C; V];

enter prepare0 into [C; V];

enter prepare0 into [V; V];

end

(b) command begin-approve-voucher

(S : supervisor; V : voucher)

if prepare0 2 [V; V] then

delete prepare0 from [V; V];

enter approve into [S; V];

end

(b0) command complete-approve-voucher

(S : supervisor; V : voucher)

if approve 2 [S; V] then

delete approve from [S; V];

enter approve0 into [S; V];

enter approve0 into [V; V];

end

61

(c) command begin-issue-check

(C : clerk; V : voucher)

if approve0 2 [V; V] ^ prepare0 =2 [C; V] then

delete approve0 from [V; V];

enter issue into [C; V];

end

(c0) command complete-issue-check

(C : clerk; V : voucher)

if issue 2 [C; V] then

delete issue from [C; V];

enter issue0 into [C; V];

enter issue0 into [V; V];

end

To control progress of the TCE, the clerk in command (a) creates a voucher

subject and acquires the undecorated right prepare, indicating that the �rst operation

of the TCE is in progress. (As will be discussed later, command (a) can be modi�ed

to tie the voucher subject to one or more particular accounts with respect to which

the voucher is being prepared.) Once the voucher has been prepared command (a0)

is invoked to indicate, via the prepare0 right, that voucher preparation is complete.

Command (a0) can be invoked only by the same clerk who invoked command (a)

for a given voucher. Command (a0) enters the prepare0 right in the [C; V] cell to

record which clerk prepared the voucher. It also enters prepare0 in the [V; V] cell

to signify that the next step of the TCE can proceed. The commands (b) and (b0)

allow a supervisor to obtain the approve right for the voucher provided preparation

is complete; and subsequently denote, via the approve0 right, that voucher approval

62

is granted. The command (c) give the named clerk the issue right for the voucher

provided the voucher has been approved, and the speci�c clerk named in the command

does not hold the prepare0 right for the voucher. This is where the facility to test for

absence of rights is crucial. Command (c0) subsequently indicates, via the issue0 right,

that the check has been issued. At this point the voucher's TCE is complete and the

voucher can be archived. (The ATAM command for archival has been omitted for

simplicity.)

Several points about the example warrant attention. In particular, command

(c) enforces dynamic separation of duties by checking for the absence of the prepare0

right before allowing a speci�c clerk to obtain the issue right. Testing for the ab-

sence of a right in a cell in the access matrix is outside the expressive power of

non-monotonic access matrix formulations such HRU and TAM1.

Also, commands \clean up" after themselves so as to ensure that only one

thread is followed. For example, once a clerk has obtained the issue right, via com-

mand (c), no other clerk can obtain the issue right (because the approve0 right has

been deleted from [V; V]). Thus it is assured that two clerks will not concurrently

issue the check, with the undesirable consequence that two checks get issued for the

same voucher.

Let us now see what happens when the same TCE is speci�ed without using

testing for absence of rights. If the model does not have the ability to test for absence

of rights, than there should be a command which ensures that the clerk who issues the

check did not prepare it. Since the commands cannot test for absence of rights, they

should test for presence of some rights. This is similar to testing for complimentary

rights in the construction given in section 4.1. If the construction of 4.1 is used,

1It has been proved in chapter 4.2 that ATAM and TAM are not strongly equivalent in terms of
expressive power.

63

than whenever a voucher is created, complementary rights have to be introduced for

all the subjects existing in the system (to that created voucher). A complementary

right �x in a cell of the matrix implies that the right x is not present in that cell. In

large scale systems, introducing complementary rights to all the subjects existing in

the system whenever a creation occurs is practically infeasible. Hence to implement

TCE's, the ability to testing for absence of rights is needed in access control models.

Now suppose the check requires approval by three supervisors. We can specify

this with the following TCE.

prepare � clerk;
approve � supervisor;
approve � supervisor;
approve � supervisor;
issue � clerk;

With this expression the three approve transactions must be executed sequentially.

This is appropriate in a manual system where there is one physical representation

of the check, which can be accessed by only one supervisor at a time. However,

in a computerized system, it should be possible to request concurrent approval.

Sandhu [San88c] proposed the following notation for expressing multiple approval.

prepare � clerk;
3 : approve � supervisor;
issue � clerk;

The colon is a voting constraint specifying 3 votes from 3 di�erent supervisors in this

case, without requiring the voting to be sequential.

We can implement this example in augmented TAM by modifying the com-

mands (b) and (b0) from the previous example into the commands shown below. The

other commands remain as they are.

(1b) command begin-approve-voucher-supervisor-1

(S : supervisor; V : voucher)

64

if prepare0 2 [V; V] then

delete prepare0 from [V; V];

enter approve into [S; V];

enter approven�1 into [V; V];

enter approve
0

0
into [V; V];

end

(1bk) command begin-approve-voucher-supervisor-k (n-1 � k � 1)

(S : supervisor; V : voucher)

if approve =2 [S; V] ^ approvek 2 [V; V] then

enter approve into [S; V];

delete approvek from [V; V];

enter approvek�1 into [V; V];

end

(1b0) command complete-approve-voucher-supervisor-k (n-1 � k � 0)

(S : supervisor; V : voucher)

if approve 2 [S; V] ^ approve
0

k 2 [V; V] then

delete approve from [S; V];

enter approve0 into [S; V];

delete approve
0

k into [V; V];

enter approve
0

k+1 into [V; V];

end

For our example the value of n in the above commands is three. By substituting

the value of n suitably, the construction works for any arbitrary number of supervisors

needed to approve. For our example six new additional rights approve2, approve1,

approve
0

0, approve
0

1 approve
0

2 and approve
0

3 are added to the set R. A right approvei

65

in [V,V] implies that the voucher has still to be approved by i supervisors. A right

approve
0

i in [V,V] implies that the voucher has already been approved by i supervisors.

Command (1b) checks via the prepare0 right, whether voucher preparation is complete

and if so, it enters right approve in [S,V]. It also enters right approve2 in [V; V] to

indicate that voucher also needs approval from two other supervisors (in addition to

the one in its command argument). Command (1bk) is not a single command. It

represents a di�erent command for each value of k and the range of values that k

can take is indicated in each command. In our example k takes values of 1 and 2 (as

the value that k takes is given by n-1 � k � 1 and as n is three for our case). This

representation is used here for brevity rather than showing commands for each value

of k. Every command represented by (1bk) tests if the supervisor in its argument

doesn't have approve right and also if the voucher has to be approved by any other

supervisor and if so, it enters approve right to the supervisor in its argument indicating

that he is ready to approve the command. Also in doing so it makes sure that the

number of supervisors still needed to approve is one less than before. Every command

represented by (1b0) tests if any one of the supervisors is ready to approve by testing

for the right approve in [S,V] and if so, it enters right approve0 in [S,V] indicating the

approval. It also makes sure that the the number of supervisors that have approved

the voucher is one more than before.

In the next step the clerk tests for the completion phase by testing for right

approve
0

n (approve
0

3
in our case) in [V,V].

The preceding implementation is asynchronous in the sense that each com-

mand has only a single supervisor and a voucher as arguments. It can be argued that

asynchronous agreement better models organizational requirements.

Following [San88c], further consider the requirement that either three super-

visors approve the check or the department manager plus one supervisor approve it.

66

The TCE notation allows weights for di�erent roles as follows.

prepare � clerk;
3 : approve �manager=2, supervisor=1;
issue � clerk;

Approve transactions with su�cient votes are required before proceeding to the next

term. In this case approve transactions executed by managers have weight 2 whereas

those executed by supervisors have weight 1. If two managers approve the check we

get 4 votes. It seems reasonable to allow this so we interpret the number of votes

required as a lower bound. The moment 3 or more votes are obtained the next step

is enabled.

Essentially the implementation must allow for progress to be made by the

disjunction of various possible steps. A natural way to implement this is with a

corresponding variety of augmented TAM commands for a given step, each of which

is capable of enabling the following step.

For this example, a possible TAM implementation is as follows. The previous

commands (1b), (1bk) and (1b0) are still acceptable and necessary, in that they rep-

resent a possible way in which approval might be achieved. They are not su�cient,

however, since the implementation must account for other ways in which votes may

be collected. There needs to be a means by which a manager can combine with one or

two supervisors, and also a means by which two managers can generate an approval.

This results in the following commands. These commands are similar to commands

(1b), (2bk) and (2b0) except that whenever a manager is given an approve right, the

right indicating the number of supervisors(or managers) still needed for approval is

replaced in a way that it indicates the new number of supervisors needed to approve

is two fewer than before. Also when ever a manager approves a voucher, than the

right indicating the total number of approvals is replaced in a way that it indicates

the number of supervisors that approved the voucher is two more than before.

67

(2b) command begin-approve-voucher-manager-1

(M : manager; V : voucher)

if prepare0 2 [V; V] then

delete prepare0 from [V; V];

enter approve into [M;V];

enter approve1 into [V; V];

enter approve
0

0 into [V; V];

end

(2bk) command begin-approve-voucher-manager-k (n-2 � k � 1)

(M : manager; V : voucher)

if approve =2 [M;V] ^ approvek 2 [V; V] then

enter approve into [M;V];

delete approvek from [V; V];

enter approvek�2 into [V; V];

end

(2b0) command complete-approve-voucher-manager-k (n-1 � k � 0)

(M : manager; V : voucher)

if approve 2 [M;V] ^ approve
0

k 2 [V; V] then

delete approve from [M;V];

enter approve0 into [M;V];

delete approve
0

k into [V; V];

enter approve
0

k+2 into [V; V];

end

The concise voting notation in the TCE has been fully enumerated in the

translation to augmented TAM commands. Provided the translation is automated,

68

this expansion is not problematical for many typical cases.

5.1.2 Coincidence of Duties

Sometimes di�erent transactions in an object history must be executed by the same

user. Consider a purchase order with the following transaction control expression.

requisition �project-leader;
prepare � clerk;
approve �manager;
agree �project-leader;
issue � clerk;

The idea is that a project leader initiates a requisition, a purchase order is prepared

from the requisition, approved by a purchasing manager, and then needs agreement of

the project leader before �nally being issued by a clerk. Our rule of distinct identity

implies di�erent project leaders be involved in requisitioning and agreeing, contrary to

the desired policy. The following TCE syntax identi�es which steps must be executed

by the same user.

requisition �project-leader # x;
prepare � clerk;
approve �manager;
agree �project-leader # x;
issue � clerk;

The anchor symbol `#' identi�es steps which must be executed by the same individual.

The x following it is merely a token for relating multiple anchors, as for example in

the TCE given below.

requisition �project-leader # x;
prepare � clerk;
approve �manager # y;
agree �project-leader # x;
reapprove �manager # y;
issue � clerk;

69

In this case there are two steps to be executed by the same project leader, and two

to be executed by the same purchasing manager.

The prepare, approve and issue steps in this TCE are similar to those in the

voucher example of section 5.1.1, and can be accomplished by similar augmented

TAM commands. In addition we need commands to initiate the requisition, agree to

the purchase order, and to reapprove the purchase order. To implement this TCE we

de�ne the following rights and types.

1. Rights R=frequisition, requisition0, prepare, prepare0, approve, approve0, agree,

agree0, reapprove0, reapprove0, issue, issue0g

2. Types T=fpurchase-order, project-leader, clerk, managerg, all of which are

subject types, with principal types TP=fproject-leader, clerk, managerg

The full set of augmented TAM commands is given below.

(a) command begin-initiate-requisition

(P : project-leader;O : purchase-order)

create subject O;

enter requisition into [P;O];

end

(a0) command complete-initiate-requisition

(P : project-leader;O : purchase-order)

if requisition 2 [P;O] then

delete requisition from [P;O];

enter requisition0 into [P;O];

enter requisition0 into [O;O];

end

70

(b) command begin-prepare-po

(C : clerk;O : purchase-order)

if requisition0 2 [O;O] then

delete requisition0 from [O;O];

enter prepare into [C;O];

end

(b0) command complete-prepare-po

(C : clerk;O : purchase-order)

if prepare 2 [C;O] then

delete prepare from [C;O];

enter prepare0 into [C;O];

enter prepare0 into [O;O];

end

(c) command begin-approve-po

(M : manager;O : purchase-order)

if prepare0 2 [O;O] then

delete prepare0 from [O;O];

enter approve into [M;O];

end

(c0) command complete-approve-po

(M : manager;O : purchase-order)

if approve 2 [M;O] then

delete approve from [M;O];

enter approve0 into [M;O];

enter approve0 into [O;O];

71

end

(d) command begin-agree-to-po

(P : project-leader;O : purchase-order)

if approve0 2 [O;O] ^ requisition0 2 [P;O] then

delete approve0 from [O;O];

enter agree into [P;O];

end

(d0) command complete-agree-to-po

(P : project-leader;O : purchase-order)

if agree 2 [P;O] then

delete agree from [P;O];

enter agree0 into [P;O];

enter agree0 into [O;O];

end

(e) command begin-reapprove-po

(M : manager;O : purchase-order)

if agree0 2 [O;O] ^ approve0 2 [M;O] then

delete agree0 from [O;O];

enter reapprove into [P;O];

end

(e0) command complete-reapprove-po

(M : manager;O : purchase-order)

if reapprove 2 [M;O] then

delete reapprove from [M;O];

enter reapprove0 into [M;O];

72

enter reapprove0 into [O;O];

end

(f) command begin-issue-po

(C : clerk;O : purchase-order)

if reapprove0 2 [O;O] ^ prepare0 =2 [C;O] then

delete reapprove0 from [O;O];

enter issue into [C;O];

end

(f0) command complete-issue-po

(C : clerk;O : purchase-order)

if issue 2 [C;O] then

delete issue from [C;O];

enter issue0 into [C;O];

enter issue0 into [O;O];

end

In commands (d) and (e), a check is made to ensure coincidence of duties.

Thus the same project-leader who makes the requisition agrees to the subsequent

form of the requisition. Also, the same supervisor who approves the requisition does

the reapproval after the project-leader has indicated agreement. In command (f),

on the other hand, a check is made for absence of an access right, thus ensuring

separation of duties.

5.1.3 Persistent Objects

We now turn our attention to persistent objects. We propose the following transaction

control expression for representing the potential history of an account.

73

create � supervisor;
fdebit � clerk + credit � clerkg;
close � supervisor;

The curly parenthesis denote repetition while `+' gives a choice on each repetition.

The idea is that an account is created, thereafter repeatedly debited or credited,

and at some point closed. Any object whose transaction control expression contains

inde�nite repetition is, by de�nition, a persistent object. Similarly any object whose

transaction control expression does not contain repetition is, by de�nition, transient.

The history of a persistent object may be lengthy. It is impractical to convert

the transaction control expression incrementally into an history, as done for transient

objects. We can realistically have only some abbreviated history for persistent ob-

jects available to the access control system. Fortunately, it is improper to require

that all transactions executed on a persistent object be performed by distinct users.

An account may have hundreds of debit and credit operations, while the organiza-

tion employs only a few dozen clerks. Separation of duties carried to this extreme

will paralyze the organization. The fundamental principle is that transactions are

executed on persistent objects only as the side e�ect of executing them on transient

objects [San88c]. Separation of duties can be enforced by keeping the following history

information.

1. The entire history of transient objects.

2. A partial �xed length history of persistent objects for non-repetitive portions

of the transaction control expression.

For the account example, assume that Dick is the supervisor who creates the account,

as a side e�ect of executing a transaction on some transient object. The TCE of the

account is modi�ed to record this fact as follows.

74

create �Dick;
fdebit � clerk + credit � clerkg;
close � supervisor;

Thereafter, as debit and credit transactions are executed on the account, again as a

side e�ect, the expression remains unmodi�ed. Finally when the account is closed by

some supervisor other than Dick, say Jerry, this fact is recorded in the TCE to give

us the following.

create �Dick;
fdebit � clerk + credit � clerkg;
close � Jerry;

There is a separation of duty involved in creating and closing the account. But

separation of duty in debiting and crediting it is enforced only to the extent speci�ed

in the transaction control expressions on the transient objects related to this account.

There is no great di�culty in implementing the transient object/permanent

object TCE distinction in augmented TAM. The general rule is that there must be

some TAM object created for each transaction on which separation of duties needs to

be enforced. In the above example, the create right for an account is given to Dick,

and the absence of the create right in the cell [Jerry, account] allows Jerry to obtain

the close right for that same account.

For the repetitive debit or credit operations, a separate voucher subject is

created each time, and transactions as illustrated in earlier examples can manipulate

the column of the access matrix associated with the voucher leading up to a debit or

credit on the account when the check is issued. To relate the voucher subject to the

account in question, the account can be tied to the voucher subject at the time the

voucher is created. For example consider the classic example of the previous section

where a voucher is prepared by a clerk, approved by a supervisor and issued by a

di�erent clerk. Than commands (a0), (c) and (c0) given in that section are modi�ed

75

to relate the voucher to an account and the modi�ed commands are given below.

Three new additional rights assign, debit and debit0 are introduced along with a new

subject type account. The right assign is used to associate every voucher in the system

to a particular account and a right debit in an account indicates that a voucher has

been prepared to be issued and hence money is ready to be debited from the account

to which the voucher is assigned. The modi�ed new command (a0) also associates the

created voucher to an account by introducing the right assign in [V;A]. The modi�ed

command (c) also enters right debit in [C;A] indicating that the clerk is ready to

debit money from the account and command (c0) also debits money from account as

the voucher has been issued by introducing right debit0 in [A;A].

(a0) command complete-prepare-voucher

(C : clerk; V : voucher;A : account)

if prepare 2 [C; V] then

delete prepare from [C; V];

enter prepare0 into [C; V];

enter prepare0 into [V; V];

enter assign into [V;A];

end

(c) command begin-issue-check

(C : clerk; V : voucher;A : account)

if approve0 2 [V; V] ^ prepare0 =2 [C; V] then

delete approve0 from [V; V];

enter issue into [C; V];

enter debit into [C;A];

end

76

(c0) command complete-issue-check

(C : clerk; V : voucher;A : account)

if issue 2 [C; V] ^ assign 2 [V;A] then

delete issue from [C; V];

enter issue0 into [C; V];

enter issue0 into [V; V];

delete debit from [C;A];

enter debit0 into [A;A];

end

The stipulation in [San88c], that Dick cannot approve vouchers for accounts

that he has created, can be easily accommodated. Consider the same classic example.

Command (b) is modi�ed as given below. Also we also assume that when Dick creates

an account, he gets a creator right for that account. All other commands remain as

they are.

(b) command begin-approve-voucher

(S : supervisor; V : voucher;A : account)

if prepare0 2 [V; V] ^assign 2 [V;A] ^ creator =2 [S;A]

then

delete prepare0 from [V; V];

enter approve into [S; V];

end

The new command (b) checks whether the voucher is prepared. It also checks

whether the supervisor who is going to approve the voucher is not the one who created

the account to which the voucher is assigned to.

77

5.2 Automatic Translation of TCEs

In this section, we provide some general observations on the implementation of TCEs

in augmented TAM by automated translation. It is clear that any translation scheme,

based on the examples of section 5.1, must accommodate at least the following.

� A subject, such as a voucher, must be created to serve as the communication

channel by which the TCE proceeds. The communication subject e�ectively

stores a \program counter" for the TCE and controls which operation can occur

next. At creation time, communication subjects for transient objects can be

tied to related subjects, such as accounts and responsible users, for persistent

objects. When a transaction is complete, the communication subject can be

destroyed, typically after audit information has been archived.

� As part of the conditional test in the ATAM commands for successive opera-

tions in a transaction control expression, satisfactory completion of prior steps

must be checked. Such checking is done by consulting the rights stored for the

communication subject for the TCE.

� Separation of duties is enforced by explicitly checking for the absence of a partic-

ular right or set of rights. The speci�c checks are easily determined by examining

the prior operations in the transaction control expression.

� Conversely, coincidence of duties, i.e., when the same principal must perform

two or more tasks, is enforced by explicitly checking for the presence of a par-

ticular right or set of rights. Again, the speci�c checks are easily determined by

examining the prior operations in the transaction control expression.

� Voting is achieved by either multiple ATAM commands or by disjunction in the

conditional test of a ATAM command. In general, a concise voting expression

78

in a transaction control expression may result in a combinatorial number of

resulting ATAM commands.

� The invocation of a ATAM command with a given set of arguments must imply

real world agreement by the users represented by those arguments. For instance,

when a ATAM command enters approve into the [S; V] cell, there must be

assurance that the action represents the supervisor's instructions, and not some

malicious party. Brie
y, authentication issues require attention in an actual

implementation.

5.3 Conclusion on the use of testing for absence of rights

In this chapter we have analyzed the implementation for transaction control expres-

sions in the augmented typed access matrix model. Transaction control expressions

are important because they provide a natural mechanism for the speci�cation of sep-

aration of duties applications. The main result of this chapter is that, to implement

transaction control expressions in the access matrix model, the models should have

the ability to check for the absence of access rights. Such checks are practically out-

side the expressive power of nonmonotonic HRU and (unaugmented) TAM. Examples

of translations of transaction control expressions into the augmented access matrix

(augmented TAM) were given, and general considerations in the translation were

outlined.

Chapter 6

Expressive Power of ATAM and its Variations

This chapter compares the expressive power of ATAM and its variations. In particu-

lar it compares the expressive power of Augmented SOTAM (SO-ATAM) and Unary-

ATAM (U-ATAM) with ATAM. In section 6.1, we prove that SO-ATAM is strongly

equivalent to ATAM. In section 6.2, we prove that U-ATAM is strongly equivalent

to ATAM in expressive power. Since U-ATAM is a restricted version of B-ATAM, we

conclude from this chapter that ATAM � SO-ATAM � B-ATAM � U -ATAM .

Since all the equivalences shown in this chapter are strong, we will understand equiv-

alence to mean strong equivalence throughout this chapter.

6.1 Expressive Power of Augmented SOTAM

This section compares the expressive power of ATAM and Augmented SOTAM (SO-

ATAM). We prove that ATAM is strongly equivalent to SO-ATAM. Since SO-ATAM

is a restricted version of ATAM, every SO-ATAM system is also an ATAM system.

To establish equivalence we therefore need to show that every ATAM system can

be strongly simulated by an SO-ATAM system. For ease of exposition, and under-

standing, we develop the construction in several phases. In section 6.1.1, we �rst

show that ATAM systems without create or destroy operations can be reduced to

SO-ATAM systems. In section 6.1.2, we then show how ATAM systems with create

and destroy operations can be reduced to SO-ATAM systems.

79

80

6.1.1 Equivalence Without Create and Destroy Operations

It is helpful to approach the ATAM to SO-ATAM simulation by �rst looking at

monotonic systems. Recall that a scheme is monotonic if it does not delete any

rights, and does not destroy subjects or objects. An important fact in monotonic

systems is that once the condition for a command is satis�ed with respect to a given

set of actual parameters, no evolution of the protection state can cause the condition

to become false. In other words, once a command is authorized it will always remain

authorized in the future.

Given any monotonic ATAM scheme, we can therefore get an equivalent mono-

tonic SO-ATAM scheme as follows. Each ATAM command that modi�es n columns

is simulated by n SO-ATAM commands. Each of these SO-ATAM commands has

the same condition as the original ATAM command, but each SO-ATAM command

modi�es exactly one of the columns modi�ed by the original ATAM command. It is

easy to see that every sequence of ATAM operations can be simulated by the corre-

sponding SO-ATAM operations. Conversely, any sequence of SO-ATAM operations

corresponds to a sequence of ATAM operations some of which may only be partially

completed. However, the SO-ATAM sequence can be extended to complete all the

partial ATAM operations. Therefore the two systems are equivalent.

The construction outlined above does not extend to non-monotonic systems.

In a non-monotonic system, operations which are currently authorized may have

their preconditions falsi�ed due to deletion of access rights by other non-monotonic

operations. At the same time, in SO-ATAM we have no choice but to simulate

ATAM commands which modify multiple columns with multiple commands. The

key to doing this successfully is to prevent other ATAM operations from interfering

with the execution of a given ATAM operation. The simplest way to do this is to

ensure that ATAM operations can be executed in the SO-ATAM simulation only one

81

at a time. To do this we need to synchronize the execution of successive ATAM

commands in the SO-ATAM simulation. This synchronization is done with the help

of a subject SNC of type snc, where snc is distinct from any type in the given ATAM

system. SNC is also used to sequentialize the execution of ATAM operations, and to

sequentialize the multiple SO-ATAM operations needed to simulate a given ATAM

operation.

Every ATAM subject or object is simulated in the SO-ATAM system as a

subject (i.e., every column has a corresponding row in the access matrix). In other

words the access matrix of the SO-ATAM system is square. This entails no loss of

generality, since ATAM subjects are not necessarily active entities.

The SO-ATAM system also contains the following rights, in addition to the

rights de�ned in the given ATAM system.

� ftoken; token0g

� fpi;j j j = 1 : : : n; for each ATAM command Ci (where Ci has n parameters)g

All these rights occur only in the SNC row and column. It is assumed, without loss

of generality, that these rights are distinct from the rights in the given ATAM system.

The initial state of the SO-ATAM system consists of the initial state of the

ATAM system augmented in two respects. First, an empty row is introduced for every

ATAM object, which does not have a row in the given ATAM access matrix. Secondly,

the SNC subject is introduced in the access matrix with [SNC;SNC] = ftokeng.

In the absence of creates and destroys, the body of a ATAM command with

n parameters can be rearranged to have the following structure.

command Ci(S1 : s1; S2 : s2; : : : ; Sn : sn)

if �(S1; S2; : : : ; Sn) then

82

enter in/delete from column S1;

enter in/delete from column S2;

: : :

enter in/delete from column Sn;

end

That is, the primitive operations occur sequentially on a column-by-column basis. Of

course, some of the columns may have no operations, being referenced only in the

condition part; but for the general case we assume the above structure.

Let us suppose the above ATAM command is invoked with actual parameters

S1; S2; : : : ; Sn.1 This operation will be simulated by several SO-ATAM operations.

The simulation proceeds in three phases, respectively illustrated in �gures 6.1, 6.2

and 6.3. In these �gures we show only the relevant portion of the access matrix,

and only those rights introduced speci�cally for the SO-ATAM simulation. It is

understood that the ATAM rights are distributed exactly as in the ATAM system.

The �rst phase consists of a single SO-ATAM command Ci-I which tests

whether (i) the condition of the ATAM command �(S1; S2; : : : ; Sn) is true, and (ii)

whether token 2 [SNC;SNC]. The former test is obviously required. The latter en-

sures that the SO-ATAM simulation of Ci(S1; S2; : : : ; Sn) can begin only if no other

ATAM operation is currently being simulated. It also ensures that once phase I of the

simulation of Ci(S1; S2; : : : ; Sn) has started, the simulation will proceed to comple-

tion before simulation of another ATAM command can begin. In other words ATAM

operations are simulated serially, with no interleaving. The phase I command is as

follows.

1For convenience and readability, we are using the same symbols for the formal parameters of
the command Ci, as well as for the actual parameters of a particular invocation of Ci. The context
will make it clear whether the symbol Si refers to a formal or actual parameter.

83

command Ci-I(S1 : s1; S2 : s2; : : : ; Sn : sn; SNC : snc)

if �(S1; S2; : : : ; Sn) ^ token 2 [SNC;SNC] then

enter pi;1 in [S1; SNC];

enter pi;2 in [S2; SNC];

: : :

enter pi;n in [Sn; SNC];

delete token from [SNC;SNC];

end

The body of this command enters pi;j in [Sj; SNC] for j = 1 : : : n, signifying that Sj

is the j-th parameter of the ATAM command being simulated. The command also

removes the token right from [SNC;SNC]. The states of the access matrix, before

and after execution of Ci-I, are outlined in �gures 6.1(a) and 6.1(b) respectively. We

call the rights pi;j as parametric rights.

In phase II of the simulation there are n commands, one each for the number

of columns modi�ed in Ci. Each of these n commands modi�es a particular column

by testing for a predicate. The predicate of these commands test for the parametric

rights of modi�ed cells. Later in this section, we illustrate how these n commands are

given by the construction by showing an example of how a simple ATAM command

atam is simulated by our construction. This example indicates how the commands

in phase II can be easily derived. The matrix after execution of commands in phase

II is given in �gure 6.2. Where ever operations is in a cell, this simply indicates that

operations in that cell have been done.

Finally in Phase III there are two commands. The �rst command checks if

all the operations have been done in all the n columns by testing for absence and

presence of rights in all the n columns. If the operations have been done, it enters

a right token0 in [SNC;SNC], indicating that the body of the ATAM command

84

SNC S1 S2 : : : Sn

SNC token

S1

S2

: : :

Sn

(a)

SNC S1 S2 : : : Sn

SNC

S1 pi;1

S2 pi;2

: : :

Sn pi;n

(b)

Figure 6.1: SO-ATAM Simulation of the n-Parameter ATAM Command Ci: Phase I

have been executed. We illustrate how this command is given by the construction

by giving an example of how a simple ATAM command atam can be simulated by

our construction. The matrix after the execution of this command is similar to the

one in �gure 6.3(a). And �nally the second command in phase III deletes all the

bookkeeping rights in SNC column by testing for the right token0. The matrix at

the end of phase III resembles �gure 6.3(b). The �nal command in Phase III is given

below. The condition �(S1; S2; : : : ; Sn; SNC) is nothing but

pi;1 2 [S1; SNC] ^ pi;2 2 [S2; SNC] ^ : : : ^ pi;n 2 [Sn; SNC]

command Ci-III(S1 : s1; S2 : s2; : : : ; Sn : sn; SNC : snc)

if �(S1; S2; : : : ; Sn; SNC) ^ token0 2 [SNC;SNC] then

delete pi;1 from [S1; SNC];

85

SNC S1 S2 : : : Sn

SNC operations operations operations

S1 pi;1 operations operations operations

S2 pi;2 operations operations operations

: : :

Sn pi;n operations operations

Figure 6.2: SO-ATAM Simulation of the n-Parameter ATAM Command Ci: Phase II

delete pi;2 from [S2; SNC];

: : :

delete pi;n from [Sn; SNC];

delete token0 from [SNC;SNC];

enter token in [SNC;SNC];

end

The SO-ATAM system is now ready to simulate another ATAM command.

We now illustrate how the ATAM command atam given below can be simulated

in SO-ATAM. The ATAM command atam tests and modi�es two columns.

command atam(S1 : s1; S2 : s2; S3 : s3)

if x 2 [S1; S1] ^ y =2 [S2; S2] then

delete x from [S1; S1];

enter y in [S3; S1];

enter x in [S2; S1];

enter y in [S2; S2];

enter y in [S1; S2];

end

86

SNC S1 S2 : : : Sn

SNC token0

S1 pi;1

S2 pi;2

: : :

Sn pi;n

(a)

SNC S1 S2 : : : Sn

SNC token

S1

S2

: : :

Sn

(b)

Figure 6.3: SO-ATAM Simulation of the n-Parameter ATAM Command Ci: Phase
III

The phase I command to simulate atam is given below. This command tests

for the predicate of atam and for token in [SNC;SNC]. If the condition is true it

deletes token and enters rights pi;1, pi;2, pi;3 in [S1; SNC], [S2; SNC] and [S3; SNC]

indicating that S1; S2; S3 are the three parameters.

command atam-I(S1 : s1; S2 : s2; S3 : s3; SNC : snc)

if x 2 [S1; S1] ^ y =2 [S2; S2] ^ token 2 [SNC;SNC] then

delete token from [SNC;SNC];

enter pi;1 in [S1; SNC];

enter pi;2 in [S2; SNC];

enter pi;3 in [S2; SNC];

end

87

Phase II commands are given below. Each command modi�es a column. As

atam modi�es two columns there are two SO-ATAM commands. These commands

just check for the parameter rights of the modi�ed cells and then modi�es the column

based on these rights.

command atam-II-1(S1 : s1; S2 : s2; S3 : s3; SNC : snc)

if pi;1 2 [S1; SNC] ^ pi;2 2 [S2; SNC] ^ pi;3 2 [S3; SNC] then

delete x from [S1; S1];

enter x in [S2; S1];

enter y in [S3; S1];

end

command atam-II-2(S1 : s1; S2 : s2; SNC : snc)

if pi;1 2 [S1; SNC] ^ pi;2 2 [S2; SNC] then

enter y in [S2; S2];

enter y in [S1; S2];

end

Phase III commands are given below. The �rst command tests if the two

columns are modi�ed by checking for the presence/absence of rights in the two

columns (and also by using the parameters rights) and if so it enters a right token0 in

[SNC;SNC]. Finally the last command deletes all the rights from the SNC column

and enters right token back into [SNC;SNC].

command atam-III-1(S1 : s1; S2 : s2; S3 : s3; SNC : snc)

if pi;1 2 [S1; SNC] ^ pi;2 2 [S2; SNC] ^ pi;3 2 [S3; SNC] ^ x =2 [S1; S1] ^ y 2

[S3; S1] ^ x 2 [S2; S1] ^ y 2 [S2; S2] ^ y 2 [S1; S2] then

enter token0 in [SNC;SNC];

end

88

command atam-III-2(S1 : s1; S2 : s2; SNC : snc)

if pi;1 2 [S1; SNC]^pi;2 2 [S2; SNC]^pi;3 2 [S3; SNC]^token0 2 [SNC;SNC]

then

delete token0 from [SNC;SNC];

delete pi;1 from [S1; SNC];

delete pi;2 from [S2; SNC];

delete pi;3 from [S3; SNC];

enter token in [SNC;SNC];

end

A proof for the correctness of the construction is given below.

Theorem 5 For every ATAM system A the construction outlined above produces

an equivalent SO-ATAM system B.

Proof: In order to prove that the construction outlined above produces an equivalent

SO-ATAM system B, it is enough to show that SO-ATAM system B can simulate

ATAM system A. In order to show this, we need to show that de�nition 27 is sat-

is�ed. Every command of an ATAM system is mapped to a single partial order of

commands (the partial order corresponds to the successful execution) and also satis-

fying condition 1 of de�nition 27. The construction ensures that conditions 2 to 5 are

satis�ed by simulating a single ATAM command at a time and by ensuring that once

a simulation of a command has started, the simulation will proceed to completion

before simulation of another ATAM command can begin. Construction also ensures

by modifying each column in phase II in such a way that condition 6 of de�nition 27

is satis�ed at both intermediate and completion states. 2

89

6.1.2 Equivalence With Create and Destroy Operations

We now consider ATAM with create and destroy operations. There are several ways

in which the construction of section 6.1.1 can be extended to allow for creation and

destruction. We describe one of them here. We have already assumed that the SO-

ATAM system will have a square access matrix, in which every object (column) is

also a subject (row). So our focus will be on subject creation.

The primitive ATAM operation \create subject Si" introduces an empty

row and column in the access matrix for the newly created subject Si. An SO-ATAM

command which has this primitive operation in its body is quite restricted in what

it can do, since all enter and delete operations will be con�ned to the new column

Si. We will therefore simulate creation in SO-ATAM in two steps.

� First we will allow unconditional creation of subjects to occur. However, the

created subject will be dormant, indicated by the dormant right in the diagonal

cell [Si; Si]. We view the unconditional creation as occurring on demand as

needed.

� Dormant subjects will be brought to life by replacing dormant in the diagonal

cell by alive.

A dormant subject cannot be a parameter in any ATAM command. This will be

ensured by modifying the ATAM system so that each ATAM command tests for the

alive right in the diagonal cells for every parameter in the command.

Consider a ATAM command which requiresm pre-existing subjects or objects,

S1; : : : ; Sm, and creates n�m subjects or objects, Sm+1; : : : ; Sn. We will modify the

given ATAM command as follows. Let �(S1; : : : ; Sm) be the given condition in this

command. This condition will be supplemented by the tests alive 2 [Si; Si], for

90

i = 1 : : :m. It will be further supplemented by the tests dormant 2 [Si; Si], for

i = m + 1 : : : n. All create operations in the body of the original ATAM command

will be discarded. Instead the dormant subjects will be made alive by the operations

enter alive in [Sj; Sj];

delete dormant from [Sj; Sj]

for j = m+ 1 : : : n.

The destroy operation can be similarly removed from the body of the given

ATAM commands, and relegated to a background \garbage collection" activity. To

do this every \destroy Sj" primitive operation is replaced in the ATAM command

by the following operations

enter dead in [Sj; Sj];

delete alive from [Sj; Sj];

The meaning of dead 2 [Sj; Sj] is that Sj has e�ectively been destroyed, since it

cannot function as a parameter in any ATAM command. The background garbage

collection can be done by introducing the following command for every type s.

command expunge(S : s)

if dead 2 [S; S] then

destroy subject S;

end

In this manner the original ATAM command has been reduced to one which only

has enter and delete operations in its body. The construction of the SO-ATAM

simulation can now proceed as in section 6.1.1.

91

6.2 Expressive Power of Unary-ATAM

This section proves that U-ATAM is equivalent to ATAM in terms of expressive

power. Since U-ATAM is a restricted version of ATAM, every U-ATAM system is

also a ATAM system. To establish the equivalence of U-ATAM and ATAM, we

therefore need to show that every ATAM system can be simulated by a U-ATAM

system. For ease of exposition, and understanding, we show the equivalence in two

phases. The section 6.2.1 gives a construction which converts a given ATAM system

without create and destroy operations into an equivalent U-ATAM system and the

section 6.2.2 explains how the construction given in section 6.2.1 can be extended to

include create and destroy operations.

6.2.1 Equivalence Without Create and Destroy Operations

An ATAM command in general tests multiple cells and modi�es multiple cells. Con-

sider a typical ATAM command Ci given below.

command Ci (S1 : s1; S2 : s2; : : : ; O1 : o1; O2 : o2; : : : ; On : on)

if �(S1; S2; : : : ; Sn; O1; : : : ; On) then

operations in multiple cells;

end

The command's predicate �(S1; S2; : : : ; Sn; O1; : : : ; On) tests for absence/presence

of rights in say m cells and modi�es n cells. This command doesn't have any create

or destroy operations. The next subsection explains how commands with create and

destroy operations can be simulated in U-ATAM. As an U-ATAM command can only

test for one cell, a single ATAM command like Ci should be simulated by more than

one U-ATAM command.

92

The construction to prove the equivalence of U-ATAM and ATAM is now

explained. In practice we can often employ simpler constructions.

The U-ATAM system contains a subject SNC of type snc, where snc is distinct

from any type in the given ATAM system. SNC is used to sequentialize the execution

of ATAM operations, and to sequentialize the multiple U-ATAM operations needed

to simulate a given ATAM operation. Also for every command in the ATAM system,

two unique types are de�ned in the U-ATAM system. The existence of a subject of

one type indicates that the predicate for a command which corresponds to that type

is true and the existence of a subject of another type indicates that the predicate for

that command is false.

The U-ATAM system also contains the following rights, in addition to the

rights de�ned in the given ATAM system.

� ftokeng

� fci j i = 1 : : : k; where there are K commandsg

� fr1; r2; : : : ; rm; r1
f ; r2

f ; : : : ; rm
f ; l1; : : : ; lng

It is assumed, without loss of generality, that these rights are distinct from the

rights in the given ATAM system. The rights r1; : : : ; rm are derived from the fact that

Ci tests for m cells and the presence of each of these rights in [SNC;SNC] indicates

that the predicate is true in a particular cell. Similarly rif ; r2f ; : : : ; rmf indicate that

the predicate is false. The rights l1; : : : ; ln are derived from the fact that Ci modi�es

n cells and these rights are used to modify the n cells.2

2The value of m and n is obtained from the fact that in the ATAM system, there does not exist
any command which tests for more than m cells and similarly there does not exist a command which
modi�es more than n cells.

93

The initial state of the U-ATAM system consists of the initial state of the

ATAM system augmented in two respects. First, an empty row is introduced for

every U-ATAM object, which does not have a row in the given ATAM access matrix.

In other words the access matrix of the U-ATAM system is square. This entails no loss

of generality, since ATAM subjects are not necessarily active entities. Secondly, the

SNC subject is introduced in the access matrix with a right token in [SNC;SNC].

Each command in ATAM is simulated by multiple commands in U-ATAM

which are divided into four phases. We now illustrate the construction by giving the

U-ATAM commands which simulate the ATAM command Ci. The simulation of this

ATAM command is done in four phases.

In the �rst phase, the command tests for the presence of token 2 [SNC;SNC].

This ensures that the U-ATAM simulation can begin only if no other ATAM operation

is currently being simulated. It also ensures that once phase I of the simulation of

Ci has started, the simulation of another ATAM command cannot begin until the

simulation of Ci is complete. The body of this command enters a right rx (x = 1

to m) in each cell which the ATAM command Ci tests and enters a right ly (y = 1

to n) in each cell which the ATAM command modi�es. i.e, if Ci tests m cells and

modi�es n cells, then rights r1; r2; : : : ; rm (along with right ci) are entered one each

in the tested cells and rights l1; : : : ; ln (along with right ci) are entered one each in

the modi�ed cells. It also removes the token right from [SNC;SNC] and enters the

right ci in [SNC;SNC] to indicate the simulation of Ci is in progress. The phase I

command is given below.

command uatam-Ci-I (S1 : s1; S2 : s2; : : : ; O1 : o1; O2 : o2; : : : ; On : on; SNC :

snc)

if token 2 [SNC;SNC] then

94

enter rights (ri or li) and ci in every cell which is tested and modi�ed in

Ci;

delete token from [SNC;SNC];

enter ci in [SNC;SNC];

end

The commands in the second phase test for the predicate of Ci. If the predicate

is true, then a new subject CT is created which indicates that the predicate of the

command is true. If the predicate is false, then a new subject CF is created which

indicates that the predicate of the command is false. The commands in the second

phase are divided again into two stages, successful and failed stages.

The commands in the successful stage of phase II are given below. These

commands create a subject CT if the predicate of the command they are simulating

is true. The command utam-II-Ci-test-i-Successful actually represents m commands

(for each value of i = 1 to m) for each of the m cells tested in Ci (The subject and

object type in the command is indicated by sj and ok, but actually they represent

the type of the subject and object of the cell being tested). These commands test if

the predicate is true (by testing each cell and in the commands below the predicate

in each cell is represented by P) and if so enter rights rx in [SNC;SNC] to indicate

that the predicate is true in the xth cell tested in Ci. Finally the command utam-II-

Ci-test-Complete-Successful in phase II checks if the predicate is true in Ci by testing

for all the rights r1; : : : ; rm in [SNC;SNC]. If the predicate is true, it deletes all

those rights from [SNC;SNC] and creates a subject CT of type ct to indicate that

the condition of Ci is true.

command utam-II-Ci-test-i-Successful (Sj : sj; Ok : ok; SNC : snc)

if ri 2 [Sj; Ok] ^ ci 2 [Sj; Ok] ^ P in [Sj; Ok] then

95

enter ri in [SNC;SNC];

delete ri from [Sj; Ok];

delete ci from [Sj; Ok];

end

command utam-II-Ci-test-Complete-Successful (SNC : snc;CT : ct)

if r1 2 [SNC;SNC]^r2 2 [SNC;SNC] : : : rm 2 [SNC;SNC]^ci 2 [SNC;SNC]

then

delete r1 from [SNC;SNC];

: : :

delete rm from [SNC;SNC];

create CT of type ct;

end

The commands in the failed stage of phase II are given below. These commands

create a subject CF if the predicate of the command they are simulating is false. The

command u-atam-II-Ci-test-i-Failure actually representsm commands (for each value

of i = 1 to m) for each of the m cells tested in Ci (The subject and object type in the

command is indicated by sj and ok, but actually they represent the type of the subject

and object of the cell being tested). These commands test if the predicate is true

(by testing each cell and in the below commands :P represents that the predicate

is false in that cell) and if not enter rights rxf in [SNC;SNC] to indicate that the

predicate is false in the xth cell tested in Ci. Finally the command u-atam-II-Ci-test-

Complete-Failure in phase II checks if the predicate of Ci is false by checking for �

and if so, it deletes all those rights from [SNC;SNC] and creates a subject CF of

type cf to indicate that the condition of Ci is false. The predicate � is represented

by the following expression (r1f [r1 2 [SNC;SNC]) ^ (r2f [r2 2 [SNC;SNC]) : : :

96

(rm
f [rm 2 [SNC;SNC]) ^ ci 2 [SNC;SNC] ^ �, where � represents that one

of r1f ; r2f ; : : : ; rmf 2 [SNC;SNC]. Here we allow this slight abuse of notation to

simplify the presentation.

command u-atam-II-Ci-test-i-Failure (Sj : sj; Ok : ok; SNC : snc)

if ri 2 [Sj; Ok] ^ ci 2 [Sj; Ok] ^ :P in [Sj; Ok] then

enter ri
f in [SNC;SNC];

delete ri from [Sj; Ok];

delete ci from [Sj; Ok];

end

command u-atam-II-Ci-test-Complete-Failure (SNC : snc;CF : cf)

if � then

delete r1
f from [SNC;SNC];

: : :

delete rm
f from [SNC;SNC];

create CF of type cf ;

end

In the third phase, the body of Ci is executed if the predicate is true and if

the predicate is false, then all the bookkeeping rights l1; l2; : : : ; ln are removed. The

commands in phase III are given below. The command utam-III-Ci-body-i actually

represents n commands (for each of the n cells being modi�ed). Every command

modi�es a di�erent cell and indicate that the modi�cation in a particular cell is

done by entering a right in [SNC;SNC]. If the predicate is false, then each of the

commands u-atam-III-Ci-body-i-failed delete one of the bookkeeping rights l1; : : : ; ln.

command utam-III-Ci-body-i (Sj : sj; Ok : ok; SNC : snc;CT : ct)

97

if li 2 [Sj; Ok] then

operations in [Sj; Ok];

delete li from [Sj; Ok];

enter li in [SNC;SNC];

end

command u-atam-III-Ci-body-i-failed (Sj : sj; Ok : ok; SNC : snc;CF : cf)

if li 2 [Sj; Ok] then

delete li from [Sj; Ok];

enter li in [SNC;SNC];

end

In the �nal phase, there are two commands which indicate that the sim-

ulation of the ATAM command is either successfully done or successfully failed.

The command utam-IV-Ci-Successfully-done deletes all the bookkeeping rights from

[SNC;SNC] and enters token back into [SNC;SNC] to indicate that simulation of

the TAM command Ci is done. The command u-atam-IV-Ci-Successfully-Failure

deletes all the bookkeeping rights from [SNC;SNC] and enters token back into

[SNC;SNC] to indicate that simulation of the ATAM commandCi is not successfully

done.

command utam-IV-Ci-Successfully-done (SNC : snc;CT : ct)

if l1 2 [SNC;SNC] ^ l2 2 [SNC;SNC] : : : ^ ln 2 [SNC;SNC] then

delete all rights from [SNC;SNC];

enter token in [SNC;SNC];

destroy CT of type ct;

end

98

command u-atam-IV-Ci-Successfully-Failure (SNC : snc;CF : cf)

if l1 2 [SNC;SNC] ^ l2 2 [SNC;SNC] : : : ^ ln 2 [SNC;SNC] then

delete all rights from [SNC;SNC];

enter token in [SNC;SNC];

destroy CF of type cf ;

end

We now explain how a ATAM command with create and destroy operations is

simulated in U-ATAM.

6.2.2 Equivalence With Create and Destroy Operations

We will now explain, how creation and destroy operations can be simulated by U-

ATAM commands by extending the construction given in the previous section.

The U-ATAM system also contains the rights given below, in addition to the

rights de�ned earlier.

� falive; dormantg

� fdi j i = 1 : : : x; if a maximum of x subjects are destroyed in a commandg

� fcri j i = 1 : : : y; if there are operations in y cells of the created subjectsg

The commands are similar to the commands in section 6.2.1 with the minor

modi�cations explained below.

When a subject Sd is destroyed in the ATAM command Ci, then a right di

is entered (in phase I) in [Sd; Sd] to indicate that the Sd should be destroyed. The

subject is destroyed in phase III by checking for a right di in [Sd; Sd].

99

When a subject Sc is created in the ATAM command and when there are

modi�cations (enter operations) in some cells of Sc, then in the U-ATAM system,

the subject is created in phase I, and right dormant is entered in [Sc; Sc] along with

a right cri in all the cells where operations occur in ATAM. In phase II, once the

condition of the ATAM is successful, then along with the creation of a subject CT ,

the right dormant is deleted and a right alive is entered in [Sc; Sc]. In the third phase

the enter operations are executed by testing for rights cri.

The rest of the commands are similar to the commands given in the previous

section.

A proof for the correctness of the construction is given below.

Theorem 6 For every ATAM system A the construction outlined above produces

an equivalent U-ATAM system B.

Proof: In order to prove that the construction outlined above produces an equivalent

U-ATAM systemB, it is enough to show that U-ATAM systemB can simulate ATAM

system A. In order to show this, we need to show that de�nition 27 is satis�ed. Every

command of an ATAM system is mapped to two partial orders of commands and also

satisfying condition 1 of de�nition 27. The construction ensures that conditions 2

to 5 are satis�ed by simulating a single ATAM command at a time and by ensuring

that once a simulation of a command has started, the simulation will proceed to

completion before simulation of another ATAM command can begin. Construction

also ensures by modifying each cell at a time in phase III in such a way that condition

6 of de�nition 27 is satis�ed at both intermediate and completion states. 2

Chapter 7

Expressive Power of TAM and its Variations

This chapter compares the expressive power of TAM and its variations. In particular

it compares the expressive power of TAM, SOTAM, BTAM and UTAM. In section 7.1

we prove that SOTAM and TAM are strongly equivalent and this result has appeared

in [SG93a]. In section 7.2, we conjecture that UTAM and BTAM (in general KTAM)

are not strongly equivalent to TAM in terms of expressive power, but we prove that

they are weakly equivalent to TAM.

7.1 Expressive Power of SOTAM

This section proves the formal equivalence of the expressive power of TAM and SO-

TAM. The construction of chapter 6 cannot be used as that construction would require

the ability to test for absence of rights. As SOTAM cannot test for absence of rights,

we need a di�erent construction to prove the equivalence of TAM and SOTAM. Since

SOTAM is a restricted version of TAM, every SOTAM system is also a TAM system.

To establish equivalence we therefore need to show that every TAM system can be

simulated by a SOTAM system. The construction to do this is quite intricate. For

ease of exposition, and understanding, we develop the construction in several phases.

First, in section 7.1.1, we identify an essential synchronization protocol which is a

critical part of the overall construction. Then, in section 7.1.2, we show that TAM

systems without create or destroy operations can be reduced to SOTAM systems.

100

101

Finally we show, in section 7.1.3, how TAM systems with create and destroy oper-

ations can be reduced to SOTAM systems.

7.1.1 Two Column Synchronization Protocol

It is helpful to approach the TAM to SOTAM simulation by �rst looking at monotonic

systems. Recall that a scheme is monotonic if it does not delete any rights, and does

not destroy subjects or objects. In monotonic systems, if a command is authorized it

will always remain authorized in the future.

Given any monotonic TAM scheme, we can therefore get an equivalent mono-

tonic SOTAM scheme as follows. Each TAM command that modi�es n columns

is simulated by n SOTAM commands. Each of these SOTAM commands has the

same condition as the original TAM command, but each SOTAM command modi�es

exactly one of the columns modi�ed by the original TAM command. It is easy to

see that every sequence of TAM commands can be simulated by the corresponding

SOTAM commands. Conversely, any sequence of SOTAM commands corresponds

to a sequence of TAM commands some of which may only be partially completed.

However, the SOTAM sequence can be extended to complete all the partial TAM

commands. Therefore the two systems are equivalent.

The construction outlined above does not extend to non-monotonic systems.

In a non-monotonic system, commands which are currently authorized may have their

conditions falsi�ed due to deletion of access rights by other non-monotonic operations.

At the same time, in SOTAM we have no choice but to simulate TAM commands

which modify multiple columns with multiple commands. The key to doing this

successfully is to prevent other TAM commands from interfering with the execution

of a given TAM command. The simplest way to do this is to ensure that TAM

commands can be executed in the SOTAM simulation only one at a time. To do this

102

SNC S1 S2 S3 : : :

SNC 0 0 0 0 : : :

S1 token next : : :

S2 next : : :

S3 : : :
: : : : : : : : : : : : : : : : : :

(a) S1 possesses the token

SNC S1 S2 S3 : : :

SNC 0 0 0 : : :

S1 next : : :

S2 token next : : :

S3 : : :
: : : : : : : : : : : : : : : : : :

(b) The token has been transferred to S2

Figure 7.1: Two Column Synchronization

we need to synchronize the execution of successive TAM commands in the SOTAM

simulation (as described in section 7.1.2).

Thus, the problem of simulating TAM in SOTAM requires solution of a syn-

chronization problem. Moreover, the synchronization must be achieved using SOTAM

commands which can modify only one column at a time. This e�ectively rules out

standard synchronization solutions based on semaphores, locks, or similar mecha-

nisms. In e�ect we have to achieve synchronization without having shared global

variables that are writable by concurrent processes.

The basic synchronization problem, which we call two column synchronization,

is illustrated in �gure 7.1. The solution to this problem turns out to be critical in

constructing a SOTAM simulation of a TAM system. For the moment ignore the

SNC row and column in �gure 7.1. In �gure 7.1(a) subject S1 possesses the token,

103

represented by the token right in the [S1; S1] cell. After S1 is done using the token,

it is passed on to S2 as indicated in �gure 7.1(b). The next right in the [S1; S2] cell

serves to connect S1 to S2 in sequence, indicating that the token is to be passed from

S1 to S2. Similarly, S2 will pass the token on to S3 in turn. The exact manner in

which the sequence of token passing is encoded in the access matrix is not material to

the synchronization problem. For illustrative purposes we have adopted the scheme

described here. The construction of section 7.1.2 uses a slightly di�erent technique.

For the moment we can ignore typing and, for simplicity, treat all entities as being of

the same type s.

The TAM command for solving the two column synchronization problem is

straightforward, as follows.

command transfer-token(S1 : s; S2 : s)

if token 2 [S1; S1] ^ next 2 [S1; S2] then

delete token from [S1; S1];

enter token in [S2; S2];

end

This command modi�es both columns S1 and S2, and is therefore not a SOTAM

command.

The transfer-token TAM command can be simulated by four SOTAM com-

mands, which use the SNC row in the access matrix to synchronize. We use three

rights denoted 0, 1, and 2, for this purpose. Only one of these rights can be present at

a time in a [SNC;Si] cell, and they do not occur outside of the SNC row. Normally

each column Si has 0 2 [SNC;Si] indicating the quiescent state with respect to the

synchronization commands. The meaning of 1 2 [SNC;Si] is that Si is ready to pass

the token. The meaning of 2 2 [SNC;Sj] is that Sj is ready to receive the token.

104

The four SOTAM commands to simulate the transfer-token TAM command are as

follows.

command transfer-token-1(S1; SNC)

if token 2 [S1; S1] then

delete token from [S1; S1];

delete 0 from [SNC;S1];

enter 1 in [SNC;S1];

end

command transfer-token-2(S1; S2; SNC)

if 1 2 [SNC;S1] ^ next 2 [S1; S2] then

delete 0 from [SNC;S2];

enter 2 in [SNC;S2];

end

command transfer-token-3(S1; S2; SNC)

if 1 2 [SNC;S1] ^ 2 2 [SNC;S2] ^ next 2 [S1; S2] then

delete 1 from [SNC;S1];

enter 0 in [SNC;S1];

end

command transfer-token-4(S1; S2; SNC)

if 0 2 [SNC;S1] ^ 2 2 [SNC;S2] ^ next 2 [S1; S2] then

delete 2 from [SNC;S2];

enter 0 in [SNC;S2];

enter token in [S2; S2];

end

105

The correctness of these commands is intuitively obvious, and a formal proof could

be easily given. Also note that the enter operation in the transfer-token-4 command

can be modi�ed to enter token0, rather than token, in [S2; S2]. In this way we can

pass a modi�ed token from one column to another by means of SOTAM commands.

We call the protocol described by these four commands as the two column

synchronization protocol. As we will see this protocol is repeatedly invoked in the

constructions of this paper.

7.1.2 Equivalence Without Create and Destroy

We now prove the equivalence of TAM and SOTAM in the absence of create and

destroy operations. This is done by giving a procedure to construct a SOTAM system

that can simulate any given TAM system. Every TAM subject or object is simulated

in the SOTAM system as a subject (i.e., every column has a corresponding row in the

access matrix). In other words the access matrix of the SOTAM system is square. This

entails no loss of generality, since TAM subjects are not necessarily active entities.

As in previous simulations in this thesis, the SOTAM system contains a subject

SNC of type snc, where snc is distinct from any type in the given TAM system. The

role of SNC is to enable two column synchronization, as discussed in section 7.1.1.

As we will see, SNC is also used to sequentialize the execution of TAM commands,

and to sequentialize the multiple SOTAM commands needed to simulate a given TAM

command.

The SOTAM system also contains the following rights, in addition to the rights

de�ned in the given TAM system.

� f0; 1; 2; token; token0g

� fpi;j j j = 1 : : : n; for each TAM command Ci (where Ci has n parameters)g

106

Except for token, these rights occur only in the SNC row and column. The token

right also occurs in the diagonal cells of the SOTAM access matrix. It is assumed,

without loss of generality, that these rights are distinct from the rights in the given

TAM system.

The initial state of the SOTAM system consists of the initial state of the TAM

system augmented in two respects. First, an empty row is introduced for every TAM

object, which does not have a row in the given TAM access matrix. Secondly, the

SNC subject is introduced in the access matrix with [SNC;SNC] = ftoken; 0g, and

[SNC;Si] = f0g for all subjects Si 6= SNC.

In the absence of creates and destroys, the body of a TAM command with

n parameters can be rearranged to have the following structure.

command Ci(S1 : s1; S2 : s2; : : : ; Sn : sn)

if �(S1; S2; : : : ; Sn) then

enter in/delete from column S1;

enter in/delete from column S2;

: : :

enter in/delete from column Sn;

end

That is, the primitive operations occur sequentially on a column-by-column basis. Of

course, some of the columns may have no operations, being referenced only in the

condition part; but for the general case we assume the above structure.

Let us suppose the above TAM command is invoked with actual parameters

S1; S2; : : : ; Sn. This command will be simulated by several SOTAM commands. The

simulation proceeds in three phases, respectively illustrated in �gures 7.2, 7.3 and

7.4. In these �gures we show only the relevant portion of the access matrix, and only

107

those rights introduced speci�cally for the SOTAM simulation. It is understood that

the TAM rights are distributed exactly as in the TAM system.

The �rst phase consists of a single SOTAM command Ci-I which tests whether

(i) the condition of the TAM command �(S1; S2; : : : ; Sn) is true, and (ii) whether

token 2 [SNC;SNC]. The former test is obviously required. The latter ensures that

the SOTAM simulation of Ci(S1; S2; : : : ; Sn) can begin only if no other TAM command

is currently being simulated. It also ensures that once phase I of the simulation

of Ci(S1; S2; : : : ; Sn) has started, the simulation will proceed to completion before

simulation of another TAM command can begin. In other words TAM commands are

simulated serially, with no interleaving. The phase I SOTAM command is as follows.

command Ci-I(S1 : s1; S2 : s2; : : : ; Sn : sn; SNC : snc)

if �(S1; S2; : : : ; Sn) ^ token 2 [SNC;SNC] then

enter pi;1 in [S1; SNC];

enter pi;2 in [S2; SNC];

: : :

enter pi;n in [Sn; SNC];

delete token from [SNC;SNC];

delete 0 from [SNC;SNC];

enter 1 in [SNC;SNC];

end

The body of this command enters pi;j in [Sj; SNC] for j = 1 : : : n, signifying that

Sj is the j-th parameter of the TAM command being simulated. It also removes the

token right from [SNC;SNC], and replaces 0 in [SNC;SNC] by 1 signifying that

the token can be moved from SNC column. The states of the access matrix, before

and after execution of Ci-I, are outlined in �gures 7.2(a) and 7.2(b) respectively.

108

SNC S1 S2 : : : Sn

SNC token, 0 0 0 0

S1

S2

: : :

Sn

(a)

SNC S1 S2 : : : Sn

SNC 1 0 0 0

S1 pi;1

S2 pi;2

: : :

Sn pi;n

(b)

Figure 7.2: SOTAM Simulation of the n-Parameter TAM Command Ci: Phase I

In phase II of the simulation the token right is passed, in turn, from [SNC;SNC]

to [S1; S1] to [S2; S2], and so on to [Sn; Sn]. Each passage requires a total of four SO-

TAM commands based on the two-column synchronization protocol of section 7.1.1.1

The details of the protocol are shown here only for the transfer of the token from

column Sj to Sj+1. The SOTAM commands for transferring the token from SNC to

S1, and from Sn to SNC are not explicitly shown, since they are so similar.

Let �(S1; S2; : : : ; Sn; SNC) represent the following predicate.

pi;1 2 [S1; SNC] ^ pi;2 2 [S2; SNC] ^ : : : ^ pi;n 2 [Sn; SNC]

The changes in column Sj in the original TAM command are carried out by a SOTAM

command whose condition tests for �(S1; S2; : : : ; Sn; SNC), and the presence of the

1One di�erence in detail is that the connection between consecutive columns is achieved by means
of the pi;j rights in the SNC column, rather than by the next right in the [Sj ; Sj+1] cell.

109

token in [Sj; Sj]. The SOTAM command which carries out the changes in column

Sj also removes token from [Sj; Sj], and replaces 0 in [SNC;Sj] by 1 signifying that

the token can be moved to the next column. The SOTAM command for simulating

changes by the TAM command in column j is shown below.

command Ci-II-j-1(S1 : s1; S2 : s2; : : : ; Sn : sn; SNC : snc)

if �(S1; S2; : : : ; Sn; SNC) ^ token 2 [Sj; Sj] then

enter in/delete from column Sj ;

delete token from [Sj; Sj];

delete 0 from [SNC;Sj];

enter 1 in [SNC;Sj];

end

The two-column synchronization protocol, begun above, is then completed to move

token to [Sj+1; Sj+1], using the following commands.

command Ci-II-j-2(S1 : s1; S2 : s2; : : : ; Sn : sn; SNC : snc)

if 1 2 [SNC;Sj] ^ �(S1; S2; : : : ; Sn; SNC) then

delete 0 from [SNC;Sj+1];

enter 2 in [SNC;Sj+1];

end

command Ci-II-j-3(S1 : s1; S2 : s2; : : : ; Sn : sn; SNC : snc)

if 1 2 [SNC;Sj] ^ 2 2 [SNC;Sj+1] ^ �(S1; S2; : : : ; Sn; SNC) then

delete 1 from [SNC;Sj];

enter 0 in [SNC;Sj];

end

110

command Ci-II-j-4(S1 : s1; S2 : s2; : : : ; Sn : sn; SNC : snc)

if 0 2 [SNC;Sj] ^ 2 2 [SNC;Sj+1] ^ �(S1; S2; : : : ; Sn; SNC) then

delete 2 from [SNC;Sj+1];

enter 0 in [SNC;Sj+1];

enter token in [Sj+1; Sj+1];

end

In this manner, the simulation of the TAM command proceeds on a column-by-column

basis, as depicted in �gure 7.3.

Finally, when the token is passed from [Sn; Sn] back to [SNC;SNC], the

two-column synchronization passes it back as the token0 right, instead of token, as

shown in �gure 7.4(a). At this point the SNC column is cleaned out to the state of

�gure 7.4(b) using the following SOTAM command.

command Ci-III(S1 : s1; S2 : s2; : : : ; Sn : sn; SNC : snc)

if �(S1; S2; : : : ; Sn; SNC) ^ token0 2 [SNC;SNC] then

delete pi;1 from [S1; SNC];

delete pi;2 from [S2; SNC];

: : :

delete pi;n from [Sn; SNC];

delete token0 from [SNC;SNC];

enter token in [SNC;SNC];

end

The SOTAM system is now ready to simulate another TAM command.

Note that a n-parameter TAM command requires 4(n + 1) + 1 (or 4n + 5)

SOTAM commands in this construction. The SOTAM simulation operates on n+ 1

111

SNC S1 S2 : : : Sn

SNC token, 0 0 0 0

S1 pi;1

S2 pi;2

: : :

Sn pi;n

(a)

SNC S1 S2 : : : Sn

SNC 0 0 0 0

S1 pi;1 token

S2 pi;2

: : :

Sn pi;n

(b)

SNC S1 S2 : : : Sn

SNC 0 0 0 0

S1 pi;1

S2 pi;2 token

: : :

Sn pi;n

(c)

SNC S1 S2 : : : Sn

SNC 0 0 0 0

S1 pi;1

S2 pi;2

: : :

Sn pi;n token

(d)

Figure 7.3: SOTAM Simulation of the n-Parameter TAM Command Ci: Phase II

112

SNC S1 S2 : : : Sn

SNC token0, 0 0 0 0

S1 pi;1

S2 pi;2

: : :

Sn pi;n

(a)

SNC S1 S2 : : : Sn

SNC token, 0 0 0 0

S1

S2

: : :

Sn

(b)

Figure 7.4: SOTAM Simulation of the n-Parameter TAM Command Ci: Phase III

columns consisting of the n columns in the TAM command, and the SNC column.

The modi�cation of each column is bundled with the �rst step of the two-column

synchronization protocol, giving us 4(n + 1) commands. One command is required

to clean out the SNC column at the end. Various optimizations are possible. Sig-

ni�cantly, the SOTAM simulation is linear in the size of the TAM command being

simulation.

A proof for the correctness of the construction is given below.

Theorem 7 For every TAM system A the construction outlined above produces an

equivalent SOTAM system B.

Proof: In order to prove that the construction outlined above produces an equivalent

SOTAM system B, it is enough to show that SOTAM system B can simulate TAM

113

system A. In order to show this, we need to show that de�nition 27 is satis�ed. Every

command of an TAM system is mapped to a single partial order of commands (the

partial order corresponds to the succesfull execution) and also satisfying condition

1 of de�nition 27. The construction ensures that conditions 2 to 5 are satis�ed by

simulating a single TAM command at a time and by ensuring that once a simulation of

a command has started, the simulation will proceed to completion before simulation

of another TAM command can begin. Construction also ensures by modifying each

column in phase II in such a way that condition 6 of de�niton 27 is satis�ed at both

intermediate and completion states. 2

7.1.3 Expressive Power With Create and Destroy

We now consider TAM with create and destroy operations. There are several ways

in which the construction of section 7.1.2 can be extended to allow for creation and

destruction. One way is to use the construction of section 6.1.2. The same construc-

tion can be used with the minor modi�cation that whenever a subject Si is created a

right 0 is also entered in [SNC;Si].

In any case we repeat the construction of 6.1.2 here to prove that TAM is

equivalent to SOTAM.

The primitive TAM operation \create subject Si" introduces an empty row

and column in the access matrix for the newly created subject Si. A SOTAM com-

mand which has this primitive operation in its body is quite restricted in what it can

do, since all enter and delete operations will be con�ned to the new column Si. We

will therefore simulate creation in SOTAM in two steps.

� First we will allow unconditional creation of subjects to occur. However, the

created subject will be dormant, indicated by the dormant right in the diago-

114

nal cell [Si; Si]. The unconditional creation also introduces the 0 right in the

[SNC;Si] cell. We view the unconditional creation as occurring on demand as

needed.

� Dormant subjects will be brought to life by replacing dormant in the diagonal

cell by alive.

A dormant subject cannot be a parameter in any TAM command. This will be

ensured by modifying the TAM system so that each TAM command tests for the

alive right in the diagonal cells for every parameter in the command.

Consider a TAM command which requires m pre-existing subjects or objects,

S1; : : : ; Sm, and creates n � m subjects or objects, Sm+1; : : : ; Sn. We will modify

the given TAM command as follows. Let �(S1; : : : ; Sm) be the given condition in

this command. This condition will be supplemented by the tests alive 2 [Si; Si],

for i = 1 : : :m. It will be further supplemented by the tests dormant 2 [Si; Si], for

i = m+1 : : : n. All create operations in the body of the original TAM command will

be discarded. Instead the dormant subjects will be made alive by the operations

enter alive in [Sj; Sj];

delete dormant from [Sj; Sj]

for j = m+ 1 : : : n.

The destroy operation can be similarly removed from the body of the given

TAM commands, and relegated to a background \garbage collection" activity. To do

this every \destroy Sj" primitive operation is replaced in the TAM command by the

following operations

enter dead in [Sj; Sj];

delete alive from [Sj; Sj];

115

The meaning of dead 2 [Sj; Sj] is that Sj has e�ectively been destroyed, since it

cannot function as a parameter in any TAM command. The background garbage

collection can be done by introducing the following command for every type s.

command expunge(S : s)

if dead 2 [S; S] then

destroy subject S;

end

In this manner the original TAM command has been reduced to one which only has

enter and delete operations in its body. The construction of the SOTAM simulation

can now proceed as in section 7.1.2.

7.2 Expressive Power of Unary-TAM and KTAM

This section compares the expressive power of UTAM with TAM. We argue in this

section that UTAM is not strongly equivalent to TAM in terms of expressive power

and is weakly equivalent to TAM in terms of expressive power. In section 7.2.1 we

discuss why the construction of section 6.2 cannot be used to prove the equivalence of

UTAM and TAM and it then discusses how the construction can be extended to prove

the weak equivalence of TAM and UTAM. In the same section we also conjecture that

UTAM and TAM are not strongly equivalent.

7.2.1 Weak Equivalence of TAM and UTAM

In this section, we discuss why the construction of section 6.2 cannot be used to prove

the equivalence of UTAM and TAM and it then discusses how the construction can

be extended to prove the weak equivalence of TAM and UTAM.

116

A TAM command in general tests multiple cells and modi�es multiple cells.

Consider a typical TAM command Ci given below.

command Ci (S1 : s1; S2 : s2; : : : ; O1 : o1; O2 : o2; : : : ; On : on)

if �(S1; S2; : : : ; Sn; O1; : : : ; On) then

operations in multiple cells

end

The command's predicate �(S1; S2; : : : ; Sn; O1; : : : ; On) tests for presence of

rights in say m cells and modi�es n cells. This command is similar to the ATAM

command Ci given in section 6.2 except that the predicate cannot test for absence of

rights.

The construction of section 6.2 simulates each ATAM command by multiple

commands in U-ATAM. These commands in U-ATAM are divided into four phases.

The command in phase I ensures that once phase I of the simulation of Ci has started,

the simulation of another ATAM command cannot begin until the simulation of Ci

is complete. The commands in the second phase test for the predicate of the ATAM

command. If the predicate is true, they create some unique subject indicating that the

predicate is true. In the third phase the body of the ATAM command is executed and

in the �nal phase, the right token is entered back in [SNC;SNC] If the predicate

is false, a di�erent unique subject is created. In the third and �nal phases, if the

predicate is false, then all the bookkeeping rights are removed and the right token is

entered back in [SNC;SNC]

The same construction cannot be used to prove the equivalence of TAM and

UTAM. This is due to the fact that commands in phase II do check for absence of

rights to check if the predicate is false. Since UTAM cannot test for absence of rights,

these commands cannot be used. If the same construction is used with only commands

117

concerned with the predicate of the TAM command being true (omitting the phase

III commands which deal with predicate being false), then the UTAM system can get

into deadlocks. For example in the UTAM system, the phase I command deletes token

from [SNC;SNC] to simulate some command �. If the predicate of � is true, then

the simulation of � proceeds to the �nal phase where it would enter a right token back

in [SNC;SNC] to indicate that the simulation of � is complete and that simulation

of some other command can now proceed. If the predicate of the command � is false,

then the UTAM system gets deadlocked as it cannot check for absence of rights. Then

UTAM system would not be able to enter right token back in [SNC;SNC]. It seems

like UTAM system cannot simulate the TAM system due to de�nition 27. We now

prove how the same construction can be modi�ed to prove that UTAM and TAM are

weakly equivalent.

In chapter 4, the construction of 4.1 proves that TAM and ATAM are weakly

equivalent and it gives a construction which represents absence of a right in a cell by

testing for presence of a complementary right. The same construction can be used to

test for absence of a right by testing for presence of a complementary right.

Hence the construction of 6.2 can be augmented with the construction of sec-

tion 4.1 to prove the weak equivalence of TAM and UTAM.

7.2.2 Strong Non-Equivalence Conjecture

We just discussed that the construction of section 6.2 can only be used to prove the

equivalence of TAM and UTAM if UTAM does have the ability to test for absence

of rights. Since, it has been proved in chapter 4 that a model which cannot test for

absence of rights, can only acquire the capability with respect to weak equivalence,

we conjecture that UTAM (and KTAM) and TAM are not strongly equivalent.

Chapter 8

Conclusion

This chapter lists the contributions of this thesis and presents an insight into future

directions. The contributions of this thesis are presented in section 8.1 and section 8.2

gives the future research directions.

8.1 Contributions

In this thesis we compare the expressive power of Typed Access Matrix Model (TAM),

Augmented TAM (ATAM) and various other models. We �rst de�ne a formalism to

compare the relationship between expressive power of two models. This is signi�cant

as there has not been any formalism to compare the expressive power of two models.

Our formalism de�nes two notions of equivalence: Strong and Weak. Our formalism

helps in proving whether two models are equivalent (strongly or weakly or both) or

not equivalent (both strongly and weakly).

We then address the impact of adding testing for absence of rights in access

control models (on expressive power) by comparing the expressive power of TAM and

ATAM. We prove that adding for testing for absence of rights does actually increase

the expressive power of access control models. We illustrate the practical need for

testing for absence of rights by showing that implementing transaction expressions

does require the ability to test for absence of rights in access control models. In

particular, dynamic separation of duties requires this ability.

118

119

Expressive Power of TAM and ATAM

TAM 6�strongly ATAM
TAM �weakly ATAM

Expressive Power of ATAM and its Variations

ATAM �strongly SO-ATAM
ATAM �strongly U-ATAM

Expressive Power of TAM and its variations

TAM �strongly SOTAM
TAM �weakly UTAM

TAM 6�strongly UTAM (conjecture)
TAM 6�strongly KTAM (conjecture)

Table 8.1: Summarized Results

We also de�ne various simpler models by posing restrictions on Typed Access

Matrix Model (TAM) and Augmented TAM (ATAM). We compare the expressive

power of these simpler models with TAM and ATAM. The results are summarized

again in table 8.1.

The results in table 8.1 indicate that all simple models have the most general

expressive power of the models they are derived from. They also indicate that simpli-

�cation of models can be carried to a point, beyond which they loose their expressive

power.

The expressive power results also have an impact on both safety and imple-

mentation issues. The e�ect of these results on implementation is positive in the

sense that all the simpler models de�ned will have an easier implementation than the

models they are de�ned from. But, the e�ect of these results on safety is not opti-

mistic. This is due the fact that these results indicate that safety analysis of these

simpler models is as di�cult as the most general model they are de�ned from.

120

8.2 Future Research

Based on the research work in this thesis, we propose the following future research

directions.

8.2.1 Better Simulations

Most of the constructions used in this thesis (to prove the equivalence of two models)

are not e�cient in the sense that they would ensure that only one command is being

simulated at a time. For example, consider the construction of 6.1. It ensures that

during the A-SOTAM simulation of an ATAM system, only one ATAM command is

being simulated at a time. Once the ATAM command is simulated, then only would

it allow simulation of another ATAM command. We would like to make these simu-

lations more e�cient by allowing concurrent execution of the simulating commands.

We would like to see, if the traditional concurrency mechanisms used in databases

and operating systems can be applied.

8.2.2 Safety Issues

In this thesis we proved that very simple models do have the most general expressive

power of the models they are derived from. This leads to the fact that the safety

analysis of these simple models is as di�cult as the most general model they are

derived from. Rather than �nding e�cient safety results for these models, it is better

to consider systems independently and then evaluate their safety features.

8.2.3 Implementation Issues

In this thesis we proved that very simple models do have the most general expressive

power of the models they are derived from. In future, we would like to address the

121

implementation of the various simpler models de�ned in this thesis.

Bibliography

122

123

Bibliography

[AELO90] M. Abrams, K. Eggers, L. LaPadula, and I. Olson. A generalized frame-

work for access control: An informal description. In 13th NIST-NCSC

National Computer Security Conference, pages 135{143, 1990.

[AJP93] M. Abrams, S. Jajodia, and H. Podell, editors. Information Security : An

Integrated Collection of Essays. IEEE Computer Society Press, 1993. To

Appear.

[ALS92] P.E. Ammann, R.J. Lipton, and Ravi S. Sandhu. The expressive power

of multi-parent creation in monotonic access control models. In IEEE

Computer Security Foundations Workshop, pages 148{156, Franconia, NH,

June 1992.

[AS90] P.E. Ammann and Ravi S. Sandhu. Extending the creation operation

in the schematic protection model. In Sixth Annual Computer Security

Application Conference, pages 340{348, Tucson, AZ, December 1990.

[AS91] P.E. Ammann and Ravi S. Sandhu. Safety analysis for the extended

schematic protection model. In Proceedings of the IEEE Computer Society

Symposium on Research in Security and Privacy, pages 87{97, Oakland,

CA, May 1991.

[AS92a] P.E. Ammann and Ravi S. Sandhu. The extended schematic protection

model. The Journal Of Computer Security, 1(3&4):335{384, 1992.

[AS92b] P.E. Ammann and Ravi S. Sandhu. Implementing transaction control

expressions by checking for absence of access rights. In Eighth Annual

Computer Security Application Conference, pages 131{140, San Antonio,

TX, December 1992.

[AS93] P.E. Ammann and Ravi S. Sandhu. One-representative safety analysis

in the non-monotonic transform model. Technical report, George Mason

University, 1993.

124

[ASS91] P.E. Ammann, Ravi S. Sandhu, and G.S. Suri. A distributed implemen-

tation of the schematic protection model. In Seventh Annual Computer

Security Application Conference, pages 152{164, San Antonio, TX, De-

cember 1991.

[Bis88] M. Bishop. Theft of information in the take-grant protection model. In

IEEE Computer Security Foundations Workshop, pages 194{218, Franco-

nia, NH, June 1988.

[Bud83] T.A. Budd. Safety in grammatical protection systems. International Jour-

nal of Computer and Information Sciences, 12(6):413{431, 1983.

[CW87] D.D. Clark and D.R. Wilson. A comparison of commercial and military

computer security policies. In Proceedings IEEE Computer Society Sym-

posium on Security and Privacy, pages 184{194, Oakland, CA, May 1987.

[For94] Warwick Ford. Computer Communications Security. Prentice-Hall, 1994.

[Gas88] M. Gasser. Building a Secure Computer System. Van Nostrand Reinhold,

1988.

[GD72] G.S. Graham and P.J. Denning. Protection { principles and practice. In

AFIPS Spring Joint Computer Conference, pages 40:417{429, 1972.

[HR78] M.H. Harrison and W.L. Ruzzo. Monotonic protection systems. In De-

Millo et al, editor, Foundations of Secure Computations, pages 337{365.

Academic Press, 1978.

[HRU76] M.H. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating

systems. Communications of the ACM, 19(8):461{471, 1976.

[Jon93] Dirk Jonscher. Extending access controls with duties|realized by active

mechanisms. In B. Thuraisingham and C.E. Landwehr, editors, Database

Security VI: Status and Prospects, pages 91{111. North-Holland, 1993.

[Lam71] B.W. Lampson. Protection. In 5th Princeton Symposium on Information

Science and Systems, pages 437{443, 1971. Reprinted in ACM Operating

Systems Review 8(1):18{24, 1974.

[LB78] R.J. Lipton and T.A. Budd. On classes of protection systems. In De-

Millo et al, editor, Foundations of Secure Computations, pages 3281{296.

Academic Press, 1978.

125

[LM82] A. Lockman and N. Minsky. Unidirectional transport of rights and take-

grant control. IEEE Transactions on Software Engineering, SE-8(6):597{

604, 1982.

[LS77] R.J. Lipton and L. Snyder. A linear time algorithm for deciding subject

security. Journal of the ACM, 24(3):455{464, 1977.

[McL90] J. McLean. Security models and information
ow. In Proceedings of the

IEEE Computer Society Symposium on Research in Security and Privacy,

pages 180{187, Oakland, CA, May 1990.

[MS88] J.D. Mo�ett and M.S. Sloman. The source of authority for commercial

access control. IEEE Computer, 21(2):59{69, 1988.

[Mur93] William H. Murray. Introduction to access controls. In Zella A. Ruthberg

and Hal F. Tipton, editors, Handbook of Information Security Manage-

ment, pages 515{523. Auerbach Publishers, 1993.

[Pit87] P. Pittelli. The bell-lapadula computer security model represented as a

special case of the harrison-ruzzo-ullman model. In NBS-NCSC National

Computer Security Conference, 1987.

[San88a] Ravi S. Sandhu. Expressive power of the schematic protection model. In

IEEE Computer Security Foundations Workshop, pages 188{193, Franco-

nia, NH, June 1988.

[San88b] Ravi S. Sandhu. The schematic protection model: Its de�nition and anal-

ysis for acyclic attenuating schemes. Journal of the ACM, 35(2):404{432,

April 1988.

[San88c] Ravi S. Sandhu. Transaction control expressions for separation of duties.

In Fourth Annual Computer Security Application Conference, pages 282{

286, Orlando, FL, December 1988.

[San89a] Ravi S. Sandhu. The demand operation in the schematic protection model.

Information Processing Letters, 32(4):213{219, September 1989.

[San89b] Ravi S. Sandhu. Transformation of access rights. In Proceedings IEEE

Computer Society Symposium on Security and Privacy, pages 259{268,

Oakland, CA, May 1989.

[San90] Ravi S. Sandhu. Mandatory controls for database integrity. In D.L.

Spooner and C.E. Landwehr, editors, Database Security III: Status and

Prospects, pages 143{150. North-Holland, 1990.

126

[San91] Ravi S. Sandhu. Separation of duties in computerized information sys-

tems. In S. Jajodia and C.E. Landwehr, editors, Database Security IV:

Status and Prospects, pages 179{189. North-Holland, 1991.

[San92a] Ravi S. Sandhu. Expressive power of the schematic protection model. The

Journal Of Computer Security, 1(1):59{98, 1992.

[San92b] Ravi S. Sandhu. The typed access matrix model. In Proceedings of the

IEEE Computer Society Symposium on Research in Security and Privacy,

pages 122{136, Oakland, CA, May 1992.

[San92c] Ravi S. Sandhu. Undecidability of safety for the schematic protection

model with cyclic creates. Journal of Computer and System Sciences,

44(1):141{159, February 1992.

[San93] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer,

26(11):9{19, November 1993.

[San94] Ravi S. Sandhu. On �ve de�nitions of data integrity. In T. Keefe and C.E.

Landwehr, editors, Database Security VII: Status and Prospects, pages

257{267. North-Holland, 1994.

[SG93a] Ravi S. Sandhu and S. Ganta. Expressive power of the single-object typed

access matrix model. In Proceedings of the Ninth Annual Computer Secu-

rity Application Conference, pages 184{194, Orlando, FL, December 1993.

[SG93b] Ravi S. Sandhu and S. Ganta. On testing for absence of rights in ac-

cess control models. In Proceedings of the Computer Security Foundations

WorkshopVI, pages 109{120, Franconia, NH, June 1993.

[SG93c] Ravi S. Sandhu and S. Ganta. Recognition and approximation of NTrees

based on binary re�nement. Technical report, isse-tr-93-103, George Ma-

son University, 1993.

[SG94a] Ravi S. Sandhu and S. Ganta. On the expressive power of the unary

transformation model. In Proceedings of the third European Symposium on

Research in Computer Security, pages 301{318, Brighton, UK, November

1994.

[SG94b] Ravi S. Sandhu and S. Ganta. On the minimality of testing for rights

in transformation models. In Proceedings of the IEEE Computer Society

Symposium on Research in Security and Privacy, pages 230{241, Oakland,

CA, May 1994.

127

[SJ90] Ravi S. Sandhu and S. Jajodia. Integrity mechanisms in database manage-

ment systems. In NIST-NCSC National Computer Security Conference,

pages 526{540, 1990.

[Sny81] L. Snyder. Theft and conspiracy in the take-grant model. Journal of

Computer and System Sciences, 23(3):337{347, 1981.

[SS91] Ravi S. Sandhu and G.S. Suri. A distributed implementation of the trans-

form model. In NIST-NCSC National Computer Security Conference,

pages 177{187, Washington, D.C., October 1991.

[SS92a] Ravi S. Sandhu and G. Suri. Non-monotonic transformations of access

rights. In Proceedings of the IEEE Computer Society Symposium on Re-

search in Security and Privacy, pages 148{161, Oakland, CA, May 1992.

[SS92b] Ravi S. Sandhu and G.S. Suri. Implementation considerations for the

typed access matrix model in a distributed environment. pages 221{235,

Baltimore, MD, October 1992.

[SS94] Ravi S. Sandhu and Pierangela Samarati. Access control: Principles and

practice. IEEE Communications, 32(9):40{48, 1994.

Vita

Srinivas V. Ganta was born on September 21, 1968, in India and is an Indian citizen.

He received the B.S in Electrical Engineering from Jawaharlal Nehru Technological

University, India, in 1989, the M.S in Information and Software Systems Engineering

from George Mason University, Fairfax, Virginia, in 1991. From 1990 to 1996 he was

actively involved in research in Information Security. During 1994-95 he received a

doctoral fellowship to continue his PhD studies and at present he is a technical sta�

member at SETA Corporation. His current work involves de�ning and prototyping

products based on Novell NetWare (release 4.1), Oracle (version 7), Windows NT to

apply Role-Based Access Control (RBAC) in a commercial environment.

Permanent address: 670 G, R.E. Quarters, Caltex Road,

Vijayawada, AP, India-520001.

This dissertation was typeset with LaTEX
z by the author.

zLaTEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth's TEX Program.

128

